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ABSTRACT 

For many problems, it is very hard or even impossible to obtain analytic solu­

tions. In recent years, powerful numerical tools for solving mathematical program­

ming/ optimization problems have been developed. This makes it possible to formulate 

control design problems as mathematical programming problems and then solve them 

using numerical optimization techniques. In this thesis, we show that two classes of 

important robust control design problems can be tackled by employing optimization 

techniques. 

In the first part of the thesis, we present a methodology to address the general 

multiobjective (GMO) control problem involving the norm, norm, "Hoc norm, 

time-domain constraint (TDC), and controller structural constraints. We show that 

the auxiliary problem resulting after imposing a regularizing condition always admits 

an optimal solution, and suboptimal solutions with performance arbitrarily close to 

the global optimal cost can be obtained by constructing two sequences of finite dimen­

sional convex optimization problems whose objective values converge to the optimum 

from below and above. Numerical implementation of the proposed methodology is dis­

cussed and several numerical examples are presented to illustrate the effectiveness of 

the proposed methodology. 

In the second part, we consider the integrated parameter and control (IPC) design 

problem where the system structure parameters enter the state-space representation of 

the system in a rational manner. This problem is a non-convex infinite dimensional 



xii 

optimization problem. Converging finite-dimensional sub-optimal problems are con­

structed and solved via a linear relaxation technique, whereby a global optimal solution 

to the IPC problem is computed within any given tolerance. A numerical example is 

provided. 
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PART I 

MULTIOBJECTIVE CONTROL SYNTHESIS 
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CHAPTER 1 INTRODUCTION 

1.1 Motivation 

In the last twenty years, designing engineering systems that are insensitive to un­

certainties has attracted considerable attention. Various robust control theories (e.g, 

"Hoc theory, theory) have been proposed to deal with the effects of uncertainties. The 

common practice in these methodologies is to optimize the closed-loop system for a 

given measure of the system with respect to all the stabilizing controllers. In practice, 

however, diversity of the uncertainties exerted on engineering systems renders it impos­

sible to evaluate controllers' performance by using a single measure. Thus, in a typical 

controller synthesis procedure, multiple quantifiers are employed to judge the quality 

of a controller. 

An example where the multiobjective concerns exist naturally is the suspension 

control for transport vehicles ([2]). In these systems, suspensions are designed to achieve 

several conflicting goals that can be translated into three norm-based objectives: % 

minimization to optimize the driver and cargo comfort for stochastic road disturbances: 

i\!L\ optimization to prevent certain variables like control action exceeding specified 

limits; bounding the norm to deal with the variability in the system parameters and 

model structure errors. The suspension controller design may be reduced to a search 

for a suitable tradeoff among the above three norm-based objectives. 

To achieve certain desirable aerodynamic characteristics, the wings of the X29 air­

craft are designed to be in the forward-swept shape. This renders better maneuverabil­



ity to the aircraft when compared with classical wing design while leaving the aircraft 

statically unstable ([3]). The control objective for this plant is to design a stabilizing 

discrete-time controller to minimize lL norm of the transfer function from the distur­

bance w injected at the plant output to the weighted control signal zt and the weighted 

output zo while achieving a good tracking performance for step input signals. These 

objectives can be achieved by solving the following multi-objective optimization prob­

lem: 

WJi'S 

W2S 

subject to 

^ tempi , k )  ^  5  *  s t cp ln[k )  ^  ̂ t empî  Vfc .  

where stepln denotes a step and atemp and btemp are two prescribed time-domain tem­

plate constraints (TDCs). 

inf 
k stabilizing 

1.2 Mathematical Formulation 

Consider the system shown in Figure 1.1, where G : [u/: u] —> [z; u] is the generalized 

discrete-time linear time-invariant plant and K is the controller, w, z, u, and v are the 

exogenous input, regulated output, control input, and measured output, respectively, r 

is a given scalar reference input (such as a step) and s is the time response output. 

Let R denote the closed-loop transfer matrix from w to z. The set of all the achiev­

able closed-loop maps is given by ([3]): 

{R = Gzm + G:uK(I — GyuK)~lGyw\K stabilizing and structured} (1.1) 

where G = [Gzw G:u; Gyw G1JU\ is the open-loop transfer matrix from [ty; u] to [z: y\. 

To simplify the notations, in the sequel, we use Rl (i = 1,..., 6) to denote the 

closed-loop transfer matrix from u/,- to Zj and R7 the transfer function from r to s. 
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vv : = 
"6 

r  

-I 

*•6 

S 

=: z 

V-

Figure 1.1 Closed-loop system 

The GMO problem studied in this paper can be stated as follows: Given the plant G. 

constants Ci > 0, i = 1,..., 6. and two sequences {atemp(A:)}^:0 and {6temp(/:)}^.0, solve 

the following problem, 

inf {c,||filWlli +C2||R2(A')||L +c,||fl:'(A')||«.} 
K stabilizing and structured 

subject to 

m/v)iii<C4 

\\Rnmh < c5 

l|Â=WII%. < C6 

"(emp(^) ^ — btemp(.fc) i ^ 0.1.2, ... 
(1.2) 

where {s(/c)}^l0 denotes the time response of the closed-loop system due to the ex­

ogenous reference input r with u/t- = 0, i = 1,..., 6. Let fj. denote the optimal value 

of the above problem. From now on, we will always assume that problem (1.2) has a 

nonempty feasible set, which includes the requirement that the optimal cost fj be finite. 

The GMO problem defined above represents a large class of multiobjective control 

problems. Many extensively studied (unstructured) multiobjective problems are spe­

cial cases of the GMO setup, e.g., %2/Il([4]), £i/TDC([5].[6]). Furthermore, for the 

first time, the %oc/Il problem and li/%2/%oo problem are addressed. The problem 
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formulation in (1.2) also provides a uniform framework for the performance tradeoff 

study involving the lL, Ho, %oo, and TDC. By solving the GMO problem for various 

combinations of the parameters Ci(i = 1,.... 6) and template sequences {atemp(fc)} and 

{btemp{k)}, important information on the limits of system performance can be obtained 

both qualitatively and quantitatively. 

It turns out that, the classes of robust optimal control synthesis problems with struc­

tural constraints imposed on the controllers considered in [7] and [8] can be formulated 

into the proposed framework and solved. It was shown that ([7, 8]) by utilizing a partic­

ular class of coprime factorization, the structural constraints imposed on the controller 

K can be equivalently transformed to the same constraints on the Youla parameter 

Q. We denote by S the subspace of stable systems Q E £"uX"v that have the required 

structure. Then, a characterization of all the achievable closed-loop maps can be given 

as follows: 

{ R  E R  —  H  —  U  * Q  * V  with Q  E 5} (1.3) 

where H E U E V E £""x"u', Q is a free parameter in S and V denotes 

the convolution operation. In the sequel, without any loss of generality, we shall always 

assume that U and V have full column and row ranks, respectively (see [3]). Also it can 

be assumed that U and V are polynomial matrices in A, i.e. impulse response sequences 

of U and V are finitely supported. In case that U and V were rational matrices in A, 

doubly-coprime factorizations can be performed on Û and V and the resulting right 

and left coprime factors of Û and V can be readily incorporated into Q ([3]). In the 

sequel, we will also assume that H has been approximated by a finitely supported 

impulse response matrix sequence. This assumption is justified by the fact that H is 

an operator in the space. 

Let H, U and V in the Youla parameterization (1.3) be partitioned into submatrices 

of compatible dimensions with the exogenous input component Wi and regulated output 



component Zj. Then the closed-loop transfer matrix sequences from it/,- to zt- can be 

expressed as Rl(Q) = Hn — Ul*Q* V1, i = 1,..., 7. 

For the sake of simplicity, and without loss of generality, we shall consider the case 

when r is a step sequence. Let Atemp be defined as: 

( 

A t emp  -— 

10 0 

1 1 0 

\ 

X • • • • / 

Then the time response of the closed-loop system due to the reference input r is given 

by s = R7 *r = AtempR7. 

Based on the Youla parameterization and the discussion above, the problem defined 

in (1.2) has the following equivalent formulation: Given a plant P. constants c* > 0, 

i = 1,... ,6, and two sequences {atenip(k)}^=Q and {btemil(k)}j?=Q. solve the following 

problem, 

M =  t o f  f ( Q )  

subject to ||.ft4 (Q) || i < c., 

l|fi5(Ç)lll < c5 (L4) 

l|fl6(Q)|k„ <c„ 

a temp{k )  <  [AternpR 7 {Q)] (k )  <  b t e m p{k ) ,  k  =  0, 1, 2, 

where/(Q) := Cl||i2l(Q)lli +c2||i?2(Q)|||+c3||^3(Q)|^oo; Rl{Q) = Hu-Ui*Q* V\ i = 

1 7. 

1.3 Current Approaches 

As indicated in the previous examples, a problem with multiple objectives can be 

cast as an optimization problem with mixed frequency- and time-domain specifications 

imposed on the %2 performance, Hoo performance, peak-to-peak closed-loop gain, and 
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transient time response due to exogenous inputs (such as a step). Although it is desirable 

to have all four types of specifications present in the multiobjective formalism, most 

current approaches address the problems combining a subset of the objectives listed 

above. In [10]-[16], various approaches were proposed to compute and improve the 

upper bounds to the 'Hi/'H00 combination problem. In [17], an linear matrix inequality 

(LMI) based approach was presented to compute a sequence of bounds that converge to 

the optimum from below. This complements the solution to the multiobjective %/%% 

control problem by furnishing a stopping criterion for the algorithms developed in [10]-

[16]. 

In the ii/Hoc problem, the objective is to minimize the worst case peak output 

due to persistent disturbances while at the same time satisfying a bound on the Hoc 

norm of a certain given closed-loop transfer matrix. In [3] and [5], linear programming 

(LP) and duality theory were used to solve this problem by approximating the Hoc 

constraint with a finite set of linear constraints obtained by sampling the unit circle. 

It has been shown, however, that for a class of problems, this approximation may fail 

to converge even as the number of sampling points tend to infinitv([18]). In [19], the 

solution to the four-block £i/%<& problem was obtained by solving a finite-dimensional 

convex optimization problem together with an unconstrained problem. In [20], 

the existence of an optimal solution to the multi-block iifH<x problem is established. 

Moreover, [20] showed that the optimal solution can be approximated arbitrarily closely 

by real-rational transfer matrices. 

For the mixed-norm optimization problems involving % and ii objectives, two main 

lines of approach have been developed to obtain the solution. In [5] and [23], solutions 

to the Hz/Ci problem were developed by using quadratic programming techniques com­

bined with duality theory. Nevertheless inasmuch as the achievable closed-loop maps 

are characterized by using zero interpolation, this line of approach will lead to a heavy 
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computational burden. Also since the inversion of certain rational matrices is required 

in the recovery of optimal controller from the resulting optimal closed-loop map, these 

approaches commonly suffer from numerical difficulties given the finite precision ac­

companying any numerical method. Recently, a new approach was proposed in [24] to 

deal with the problems involving l\ optimization. This method, which is referred as 

the Scaled-Q method, avoids the utilization of zero interpolation to characterize the 

admissible closed-loop maps. Also it yields the impulse response sequence of the min­

imizing Youla parameter Q as the optimal solution. This makes straightforward the 

task of controller recovery. More noticeably, this approach suggests that introducing a 

norm bound on the Youla parameter in the optimization may lead to a well regularized 

optimization problem. Motivated by this idea and by appealing to the Banach-Alaoglu 

theorem, solution to the problem has been developed in [25] and [4]. 

Often performance requirements on the transient time response of the closed-loop 

system to a given test signal (such as a step) are imposed. It is well recognized that 

standard single-norm optimal control (^, %, or WM) strategies cannot handle spec­

ifications or constraints on the time response of a closed-loop system exactly. Thus, 

there exists a need to consider the time response specifications explicitly in the multi-

objective problem setup. The multiobjective problem of minimizing the Hoc norm with 

finite horizon TDC was solved in [26]-[28]. Solutions were obtained in [29] to the case 

when the template constraints were imposed over an infinite horizon. In [30], the prob­

lem of tio minimization with constraints on the time-domain response of a closed-loop 

transfer function was studied. The TDC was first translated into an bound on the 

closed-loop map of interest, and then the problem was solved by solving a sequence of 

finite-dimensional quadratic programming problems. In [31], an algorithm was proposed 

to explicitly obtain the state feedback control law to minimize a quadratic performance 

criterion with TDC on inputs quadratic performance criterion with TDC on inputs and 
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states. For both the finite horizon and the infinite horizon problems, the control laws 

were shown to be piecewise linear and continuous. In [5] and [6], the problem of 

optimization with TDC was addressed by a method which needed zero interpolation. 
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CHAPTER 2 PROPOSED SOLUTION 

In this Chapter, we present a solution([33]) to the problem (1.2). The approach we 

pursue here evolves from the solution to the %o/E\ problem presented in [4] and [25], 

where the idea of introducing Youla parameter Q as the optimizing variables was used. 

This has similarity to the Q-Parameter design mentioned in [34]. To accommodate 

the inclusion of "Hœ norm objectives in the GMO problem formalism, we make use of 

the LMI relations proposed in [12] and [35]. For special cases of the GMO problem, 

we present simplified solutions whose computation does not call for the LMI tools and 

therefore the computational burden is significantly reduced. 

2.1 An Auxiliary Problem 

In the general case, (1.4) is a difficult problem to solve. To facilitate the solution of 

this problem, we define an auxiliary problem closely related to it. The auxiliary GMO 

problem statement is: Given constants 7 > 0, q > 0. i = 1, — ,6, and two sequences 
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{aieTnp(fc)}!tLo and {ptempi.^) }2=o.• solve the following problem, 

v  = inf f { Q )  
Q6^«*n" 

subject to HQUi < 7 

I|/24(Q)IIl<C4 (2.1) 
II^(Q)II!<C5 

ll#(Q)||%. <c„ 

O-teTnp(k) 5; ^ 6<emp(/î), k =0,1, 2 , . . . .  

Note there is an extra one norm bound on the Youla parameter Q in the auxiliary 

problem compared with the original G MO problem (1.4). As will be seen later, this 

extra constraint ||Q||i < 7 plays an essential role in obtaining solution to (1.4). Also, 

introducing Q as an optimization variable facilitates the computation of the optimal 

controller. This avoids the numerical difficulties involved with zero interpolation meth­

ods. 

2.2 Relationship between the GMO Problem and the Auxil­

iary Problem 

In the problem formulation of (1.2), Q needs to satisfy the constraint ||i?4(Q)||i. = 

11 if44 — U'l*Q* V"4||t < C4. Suppose Û'v and V'4 have full normal column and row rank 

and have no zeros on the unit circle. Then Ul and V*4 are left- and right-invertible in 

lt and it follows that ||Q||L < ||(D"4)-'||i(||ff44||i4-c.t)||(y4)-''||i := ,5, where (U4)~l and 

(V'4)~r denote the left and right inverse of (74 and V"4. respectively. Consequently if we 

choose 7 > Q in the auxiliary problem, the constraint ||Qlii < 7 is redundant in GMO 

problem and we get u = /z. In the case where {74 or Vr4 has zeros on the unit circle, there 

is a possibility that the original GMO problem does not admit an optimal solution and 

the one norm of the optimization variable Q can not be restricted to any bounded set. 



Thus, from a computational point of view, it would be desirable to impose a reasonable 

bound on ||Q||i in the optimization for this case as well. 

In what follows, we shall focus our attention on the auxiliary problem. In proving 

the main results of the paper, we make the following assumption on the TDC. 

Assumption For all k, a temp(k) < btemp(k). Furthermore, there exists jVL, jV2 so that 

Q-temp(.k) = Qtemp(-Vl) for all k ^ N\ and btemp(k) = btemp( jVo) for all k ^ iVo -

2.3 Existence of an Optimal Solution and Converging Lower 

Bounds 

In this subsection, we develop a sequence of finite dimensional convex optimization 

problems whose objective values converges to u from below. We will also prove the 

existence of an optimal solution to (2.1). Define 

/ 

Ti(Q) := 

#(0) 0 0 

Rl{l) jy'(o) o 

#(2) if '( l)  R l (  0 )  

X 

\ 

( 

Ti ,k (Q)  :=  

R{(0) 0 

f2'(l) flf(0) 

& { k )  • • •  

0 

iP(l) Ri(0) 

It is a standard result that [|£l(Q)l|-Koc = PHQ)|| := supkamax{Titk{Q)) = supfc ||2fjt(Q)|| 

where || - || denotes the matrix spectral norm. Furthermore, from standard results in 

linear algebra (e.g., Theorem 4.3.8. in [36j or Chapter 2 in [37]), we have ||T%&(Q)|| < 

PU+i(Q)ll < PKQ)I|, for all A:. 
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Based on the above discussion, we define a candidate lower bound of u as 

1/71 := 

subject to HQIIi < 7 

\\Pn(R5m\\l<C5 

\\T*M)\\<<* 

^ ['^-TEMPR (Q)](^) — ^TEMPO^) 1 K 0, 1,. . ., M. 

where fn(Q) := cL||P„(/2l(Q) ) | | L + C 2 ||P„(#2(Q))||i+c3||T3,n(Q)||. Since only the param­

eters of Q(0),..., Q(n) enter into the optimization, problem (2.2) is a finite dimensional 

convex programming problem. Thus, it always admits an FIR optimal solution on the 

nonempty compact feasible set. 

The following lemma is an immediate consequence of the above definition. 

Lemma 2.3.1 For all n, un < un+i < t/. 

Proof: For any Q G S, it is true that 

l|P„(fl'(Q))lli < l|P„+1(fl'(Q))l|i, (- = 1,4) 

!lfi,(fi'(Q))lli < (< = 2,5) 

lm..(Q)ll < l|Tw+i(Q)||, (i = 3,6). 

Now suppose for some n, un > vn+i- By the definition of un+ L, there is some Q in 5 

such that 

fn+l < fn+l(Q)  <  Vn,  ||Q||l < 7 

||&+i(^(Q))Hi < c4 \\Pn+l(R5m\\l < Co l|r6,n+l(Q)|| < Cq 

at emp{k) ^ l/^-tempR' (Q)](^) ^ ^temp(^) t k = 0, 1, - . - , TL + 1. 

Then Q also belongs to the feasible set of u n  and it follows that f n +i{Q)  > which is 

a contradiction. Similarly, it can be shown that for all n, un < v. • 
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In proving the existence of an optimal solution to the auxiliary problem and the 

convergence of the lower bounds un to z/, we use the following result from linear operator 

theory: 

Theorem 2.3.1 (Banach-Alaoglu) Let (X, \| • ||x) be a norrned vector space with 

X* as its dual. The set 

B" := {x '  € X* : ||a:*|| < M} 

is compact in the weak-star topology for any M E H. 

Now we are ready to present the main result of this section. 

Theorem 2.3.2 There is an optimal solution Q° in l?uXnu to problem (2.1). Moreover, 

un —Y u. 

Proof: Suppose Q n  E S is a finitely supported optimal solution to (2.2). Note that 

IIQnlli < 7 for any positive integer n and Banach-Alaoglu theorem implies that B~( := 

{Q € l?uX7Iu : HQIIi < 7} is weak-star compact. Thus, there exists a subsequence {Q„m} 

of {Qn} and Q° in l?"xriu such that (Qnm)ij (Q°)ij (i = j = L...,ny) 

in the ^(c^,Cq) topology*. It follows that for all t .  Q n m { t )  Q°{ t )  and for all n, 

Pn(R(Qnm)) Pn(R(Q0)) and 21,n(Qnm) -)• Titn(Q°) (i = 3,6) as m oc. Moreover, 

suppose without loss of generality that, Qnm in S is required to be such that (Qnm)ij = 0. 

Then this is equivalent to require that (Qnm)ij(t) = 0, Vt and so it follows from the above 

arguments that for all t, Qlj{t) = 0, that is, Q° € S. 

For any n > 0 and for any nm > n, 

fn{Qn m )  5 :  fn m {Qn m )  =  ̂ r im — l / ~ 

By letting m 00, we get 

< K VN. 
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Since n is arbitrary, it follows that 

Similar arguments show that 

IIQ°lli < 7, \\RHQ°)h < c,,\\R5(Q°)\\l < c5. 

Furthermore, for any given k > 0 and for any nm > k, 

\ \TeAQn m ) \ \<\ \Te ,n m (QnJ\ \ .  

Recall the fact that T&^{Qnm) is a function of Qnrn(0),....Qn m{h) only. By letting 

m —> GO, we have 

l|r6t*(Q°)|| < c6, v*. 

Since k is arbitrary, it follows that 

lirs(Q°)|| :=suPt||r6ltto°)|| <c6. 

Finally, for any given k > 0, there exists some nm > k so that 

— 1/^tempR (QRIM)](^) 5; ^TEMP(^)-

Then for all I > m, we have 

QTEMP(^-) ^ )](A-*) ^ ̂ TEMP^')-

By letting I tend to infinity, it follows that 

a t e mp{k)  <  [AtempR 7 (Q°)] (k )  < btf,mp(k), Vfc. 

Thus, Q° is an optimal solution to problem (2.1). 

To prove that vn -> t/, we note that for all n > 0 and nm > n, 

fn ( .Qn m )  — fn m (Qn m )  -
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Taking the limit as m tends to infinity we have 

fn (Q°)  <  jim^ "n m, for all n > 0. 

It follows that 

Thus, we have shown that limm-**, unm = v. Since un is a monotonically increasing 

sequence bounded above by v, it follows that un —> v. • 

2.4 Converging Upper Bounds 

In the last section, we have shown that un provides a lower bound for u and that 

the sequence {un} converges monotonically to £/. However, it is clear that un itself does 

not provide any information on its distance to the optimal cost u. This motivates the 

computation of an upper bound of u. To this effect, we shall develop a sequence of 

finite dimensional convex optimization problems whose objective values converge to u 

monotonically from above. By combining these upper bounds with the lower bounds 

derived in the last subsection, we obtain an effective method to synthesize suboptimal 

controllers with performance within any prescribed tolerance of the optimal. 

Let un be defined by 

MF m) 

subject to HQIIl < 7 

l | f l 4 ( Q ) l l l < C 4  

11^(13)113 <c3 (2-3) 

< C 6  

atemV(k) < [AtempR7{Q)](k) < btemp{k), & = 0, 1,2, ... 

Q(k) = 0 if k > n. 
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The numerical solution of this problem amounts to solving a convex programming prob­

lem involving only Q(0),.... Q(n). It is clear that since H, U and V are all finitely 

supported, the time response s = AtempR7(Q) would be a constant after some finite 

time instant N > n and (2.3) is a finite dimensional optimization problem. 

Lemma 2.4.1 Given any Q in £?uXn" and positive real, number 5, there exists some N 

so that n > N implies 

I l|fl4«>(<?))lli-||iP«)lli I < 5 

I  I < <  

I l|fl=(P„(Q))||*_ - l|Â6W)ll*„ I < s 
| [A,cmpfi7(P„(Q))l(fc) - [A,CT„,flr(Q)l(fc) I < d'.Vfc. 

Proof: It is clear that 

ll^((/-&)(Q))lli 
= ||C/'1*((/-P„)(Q)),F4)||i 

< ||C/4||L||(/-Pri)(Q)||l||V-l||l 

\\Atempn7((i - p^miu 

= ||fl7((/-P„)(Q))*r||oo 

< ||FI'((/-^)(Q))||I 

< ||^||i||(f-PJ(Q)||ilMli. 

Since li is a proper subspace of we infer by Holder inequality that 

I I -  P „ ) ( 0 ) ) l l 2  <  l | f ' s | | f | | ( /  -  P „ ) ( Q ) l | 1 | | t / 5 | | , .  

Moreover, for any given x E L?UXNV, ||z||%^ < y/™Û1MIl and it follows that 

||P6((/-Pn)(Q))|k00 < v^ll^llill(/-&)(Q)lli||^llt. 

Since Q E ||(/ — Pra)(Q)||i can be made arbitrarily small by letting n large 

enough and the conclusion follows immediately from the above four inequalities. • 
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Define 

C := { (7, c4, c5, c6, atemp(0),a temp(Ni), btemp( 0),&temp(iV2)) € 7^6+^1+'v=|. 

Then there exists Q E <S so that 

M I  < 7  

||fl4(Q)Hl < C 4  

||Â=(Q)||%_ <CG 

ATEMP(fc) < [AtempR7(Q)}(k) < btemp(k), VA:}. 

Lemma 2.4.2 C is a convex set. 

Proof. Let (7? £5? cgT t^tempi ^temp)i ( / ; ̂ 4) ^5t ^6i ^tempj ̂ (emp) ^ then there exist Q 

and Q so that 

IIQII, < 7, IIQIIl < 7, ll^tollli < c4, ||fl'(Q)||, < c4 

l|fl®(<3)llj < c», 11^(5)111 < 85, I|A6(Q)||h_ < c6, ||fi6(Q)||«. < % 

a t e rnp{k) < [AtempR'{Q)](k) < btemp{k) 

Ô-tempi^) 5; [-"^TERRIPP~(Q)](^) ^ ^TEMP(^); VFC. 

Then for any A E [0. 1], 

||AQ + (1 — A)Q||L < A7 + (1 — A)7 

||i?4(AQ + (1 — A)Q)||l < Ac4 + (1 — A)q 
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l|fl5(A<? + (l-A)Q)||1 

< (A||fl5(Q)||2 + (l-A)||fl=(Q)||2)2 

= A(A - l)(||fl5(Q)|b - ||fl5(Q)ll2)2 + A||fl5(Q)||l + (1 - A)||R5(Q)||3 

< ÀC5 + (1 — z\)c5 

||Â«(AQ + (1-A)Q)||%. 

< Acg + (1 — z\)cg 

Aûtemp(^) (1 A)Atemp(A:) 

< AtemplR ' ( \Q + (1 — A)Q](A:) 

< Abtemp(k) + (1 — A)btemp(k), Vfc. 

Let Qx := A Q + (1 - A)Q, then QA G (^uXriu and A(7, c4, c5, c6, alemp, btemp) + (1 -

'M (T> C'li C5, Cg, Gtempj ^temp) G C. ® 

Lemma 2.4.3 ([22]) Let f :Q 71 be a real valued convex function on a convex set 

Q of a vector space X. Let G be a convex mapping from F2 into TZn. For any z in TZn. 

define 

w(z) := inf{/(x) : x G Q,G(x) < z}. 

If C is any convex subset of Hn such that for all z in C, w(z) is in 11, then w is a 

continuous function of z in the interior of C. 

Lemma 2.4.4 u is a continuous function with respect to (7. c4, c5, c6, atemp, bteTnp) in 

the interior of C. 

Proof: The conclusion follows immediately from Lemma 2.4.2 and Lemma 2.4.3. • 

In what follows, we shall assume (7, c4, c5, ce, atemp, 6temp) lies in the interior of C. 

Theorem 2.4.1 {1/"} forms a monotonically decreasing sequence of upper bounds of v. 

Furthermore, 

i/n v, as n —> 00. 
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Proof: Clearly, u n  > u n + l  since any Q in S which belongs to the feasible set of t/n will 

also be feasible for problem t/n+L. For same reason, we have un > u for all n. Thus, 

{z/n} comes into being a decreasing sequence of real numbers bounded below by v. 

For notational simplicity, in what follows, we shall omit the symbol 7 in i>n and v. 

For any given e > 0, the continuity of u implies that there exists S > 0 such that 

//(C4 S.  C5 S :  Cg â,  Cl temp b t e m p  f(c4, C5, Cg, Cltempi  ^temp)  

where atemp + 5 := {atemp(A:) + and b t e r n p  — 5  := {ôtemp(^') - ̂}%=o- Also, there 

exists some Qs such that 

f {Q S )  — l/(C4 — 5,  Cô — £, c6 — 5, atemp + S,  b t e m p ~  à)  < e/4 

| | /?"(Q t f)|| l<C4-5 

11^(^)111 <C5-CÎ 

a t emp(k)  + ̂  < [AtempR'  (Q5)](^') 5; b t e T n p (k )  — d, Vfc 

By Lemma 2.4.1, there exists some positive integer N large enough so that n > iV 

implies 

/ (PniQ*))  -  HQ 1 )  < €/2 

l|fl4(-P»(Q'))lll - l|if(QS)lll < S/2  

[|R5(P„(Q,))i-l|R5(Q,)i<a72 

l|fl6(P„(<3 ,))[|«. -  IIÂWJII*. < s/2 

lAumpRT(PM ' ) ) ] (k )  - [A,Em„fl7(<25)l(<:) < S/2 ,Vk .  



21 

It follows from above that for all n > iV, 

f{Pn(.Q )) ^ C5, Cg,  Qtempi  btemp} ^  

\mpn(Qs))\\i < c, 

\\R5(Pn(Qs))\\l<cs 

<CG 

atemp{k) < [AtempR7(Pn{QS))](k) < btemp{k),Vk 

\ \ P n ( Q S ) \ \ i < l -

Thus, Pn(Qs) satisfies all the constraints of problem frt(c.t, c5, c6, aiemp, btemp) and it 

follows that for all n > N, 

U (c'4, C5, Cq, 0-te.mp? ^iernp) ^((-4; ̂ 5, Qi, CL tempi btemp) 6-

This proves the theorem. • 

After establishing the convergence of un and vn to v. we now briefly address the 

issue of constructing suboptimal controllers from the optimizing Youla parameter Q. 

For any prescribed performance tolerance S > 0, the optimizing process can be stopped 

once for some s, |t/s — v3\ < â. The minimizing variable Qs to the upper bound us 

can then be used to recover a suboptimal controller which achieves the objective value 

vs. In some cases, the supported length of the optimizer Qs (i.e. s) will be rather 

large and this would lead to a suboptimal controller with undesirable high order. No­

tice that there still is no known results available on the problem of model reduction 

with structure preservation and this problem still warrants further research and inves­

tigation. However, in almost all the numerical examples encountered by the authors, 

structured controllers with acceptable low orders can be easily obtained by using some 

well-established approximation techniques (e.g. the Hankel SVD method by S. Kung). 
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2.5 Uniqueness and Convergence of the Optimal Solution 

Having established the existence of an optimal solution Q° to problem (2.1) and 

the convergence of un to z/, we now present results addressing the uniqueness and 

convergence properties of the suboptimal and optimal solutions. The proofs for these 

results are given in the appendix. 

Lemma 2.5.1 ([22]) Let 0. be a convex subset of a Banach space X and f : Q. R 

be strictly convex. If f achieves its minimum on Q, then the minimizer is unique. 

Theorem 2.5.1 Suppose Û2 and V2 have full column and row rank on the unit circle 

respectively. Let Qn denote an optimal solution to un. Let Q° denote an optimal solution 

to v. Let Rn := H — U *Qn * V, n = 0,1, — Then the following is true: 

(1) Rn (n = 0,1,...) is unique. 

(2) Qn (n = 0,1,...) is unique. 

Proof: (1) Define A°eas := {R € (?{z*nw : \ there exists Q E l?"xnv so that 

R = H — U * Q *V 

IIQIII<7 

II^4(Q)III<C4 

\\R5(QM<C5 

LL^(Q)LL%_ <C6 

atemp{k) < [AtempR7(Q)]{k) < b t e m p{k), VFC}. 

Then A°eas is a convex set. Problem (2.1) is equivalent to 

*= inf cdl^lli+CoJl^irô + callÂ3!!^- (2.4) 
RzA%*s 

Furthermore, it is clear that the relationship between Rl and R can be expressed as 

Rl = ÊiRFi 
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where 

Êi = [On_. xn;;i In:i 0n.jXn;7] E 72."--

Fi = [Onmi xnWi ' ' • InWi ' ' ' On^xnuJ1" £ 72.""' Uw', i = 1, . . . , t. 

Also, the Êi = Ei and F; = F;. Thus, problem (2.4) can be reformulated as 

v  —  inf g ( R )  (2.5) 

where 

g(fi) := c,||J57i * fl • F,||, + c2||£2 » » F41 + csllftAfillw» 

= C,||fi'|li+C2l|fl2lll+C,||fi3||^. 

VVe claim that g { R )  is a strict convex function of R  given the assumption c2 > 0. To 

see this, choose R, S E A°eas such that R^S. Then it follows from the invertibility of 

Û2 and V2 that R2 ^ S2. Then for any <* E (0,1), 

g { a R  +  ( 1  —  a ) S )  =  Cl||£JL * {aR) * Fi + Ei * {{I — a)S) * Fi\\i 

+ c211So * { a R )  *  F - i  - + -  E o  *  ((1 —  a ) S )  * F2||| 

+ C3||£,
3(A:P3)F3 + ̂ ((L — A)S)F3||%^, 

= ctllct-fî1 + (1 — a)SL||i +C2\\OLR^ + (1 — a)S2||| 

+ c3||aP3 + (1 - oOS3!!*» 

< c1a||Al||+cl(l-a)||St||i+ c2a\\R2\\l+c2{l-a)\\S2\\l 

+ C3a||É3||-Hœ +c3(l — a)!!^"3!!^ 

=  a g { R )  +(1 - a ) g { S )  

where the strict convexity of || - ||o and the convexity of || - ||i and || • ||%^ are employed 

to justify the strict inequality sign. This proves that g(-) is strictly convex on A°eas. 

Then by Lemma 2.5.1, R°, the minimizing closed-loop map to problem (2.4), is unique. 

Similar arguments as above show that Rn (n = 1.2....) is unique. 

(2) The uniqueness of Qn(n = 0,1,...) follows immediately from (1) and the invert­

ibility of Û2 and V2. B 



One direct consequence of Theorem 2.5.1 is that Q° is the weak-star convergent limit 

of a subsequence of {Qn}. 

Lemma 2.5.2 Suppose Ù2 and V2 have full column and row rank on the unit circle 

respectively. Then there exists a subsequence {<5"m} of {Qn} such that (Qnm)ij —> 

(Q°)ij (i = 1,..., nu, j = 1, ..., nv) in the IF (eg, c0) topology. 

Proof: Since {Qn} is uniformly bounded by 7 in lL norm sense, Banach-Alaoglu Theorem 

implies that there is a subsequence {Qnm} of {Qn} and some Q° E ^uXn" such that 

(Qnm)ij -> (Q°)ij (î* = 1, ...,nu, j = 1 ,...,nv) in the W(c5,c0) topology. So it follows 

that Qnm{t) -> Q°{t) for all t and for all n, Pn(R(Qnm)) -> Pn(R(Q°)) and T^n(QUm) -> 

7i,n(Q°) ('« = 3,6) as m —> 00. 

Now it is clear that for any n > 0 and any nm > n, 

cl||Pn(Pl(Q"-«))||L+c2||Pn(E2(Q"'"))||| + C3||T3,„(Q"'")|| 

< cl||Pl(Qn,r')||l+c2||P2(Q^)|iI +cz\\R3(Q^)\\Hoo 

=: I/NM 

By letting m —> 00, we have 

cl||P„(R1(Q°))lli+c2||P„(fi2(l50))lll + C3||r3,n(Q°)|| < =v, Vn. 

So it follows that 

C1||fl1(Q0)||,+C2||S2(l20)||5 + C3||fl3((Q0)||«„ < ». 

Furthermore, by exactly the same argument as in the proof of Theorem 2.3.2, we 

can verify that Q° satisfies all the constraints of problem (2.1). Thus, Q° is an optimal 

solution to u and by the uniqueness of the optimal solution of u, we have Q° = Q°. • 

If no %oo term is present in the objective function of the GMO problem, the con­

clusion of Theorem 2.5.1 can be made stronger. More explicitly, suppose C3 = 0 in the 

GMO problem setup (2.1), i.e, f(Q) = Ci||Pl(Q)||i 4-c2[|i22(Q)||2- It can be easily seen 

that the conclusions established in Theorem 2.3.2 and Theorem 2.4.1 hold. 
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Lemma 2.5.3 Let f : (Rl, R2) —> 72. (where Rl, R2 are matrices consisting of elements 

in ii) be defined by: 

f(Rl,R2) := Cl||fll||L+c2||fl2||l. 

Let {(Rl'h, R2,k)} be a sequence such that 

(Rl'k(t), R2'k(t)) -> (Ru°{t),R2<%t)) for allt 

and 

f(Rl'k, R2>k) < f{RUo, R2'°) for all k. (2.6) 

Let ||J?l,0||i = ||(i2l'°)p||i where (Rl'°)p represents the pth row of Rl,°. Then 

C i \ \ ( R U k ) p  ~  ( R U o ) p \ \ i  + c2||R2'h - R2'°III -+ o as k -» oo. 

The same conclusion holds if condition (2.6) is replaced with the following condition: 

f(Rl,k, R2*) -> f{Rl'°, R2'°). (2.7) 

Proof: VVe prove for the case when c2 > 0 and when condition (2.6) is true. We leave 

the rest of the proof to the reader. For notational convenience we will denote (Rl, R2) 

by R. Also we define 

s((Rl,a2)) :=c1||(fl,yl+c2||fl2|iii. 

It is clear that 

g((Rl'k,R2*)) < g({Rl'°,R2'0)) for all k. 

We claim that 

g{Rk) -> g(R°) as k -> oo. (2.8) 

Suppose not, then there exists a subsequence {Rk*} of {Rk} and an eL > 0 such that 

g{R°) - g(Rk') > d for all s. (2.9) 
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Choose m such that g((I — Pm)R°) < ex/2. Thus 

g{P m R°)  +  y -  g(R k ' )  >  g in*)  -  g[R k ' )  > e„ 

which implies that 

g{PmR°) - g(PmRk') > g(PmR°) - g(Rk°) > eL/2, 

But we know that Rkl converges to R° pointwise and therefore g(PmRk°) —> g(PmR°). 

Thus we have reached a contradiction to our supposition which proves (2.8). 

Given e > 0 choose n such that 

||(/-&)^||2<E/(8MC2) 

g((I - Pn)R°) < c/8. 

where M is an upper bound on H(p,q) which exists because g{Rk) < f{R°). 

As g{Rk) converges to g{R°) and Rk{t) converges to R°{t) for all t it follows that 

g((I — Pn)Rk) converges to g((I — Pn)R°). Thus there exists an integer /vL such that 

k > Ki implies that g((I — Pn)Rk)) < g({I — Pn)R°) + e/4. 

As Rk{t) converges to R°(t) for all t it also follows that g(Pn(Rk — R°)) converges to 

zero. Thus we can choose an integer Ko such that if k > Ko then g(Pn(Rk — R°)) < e/4. 

Thus for any k > max{/vl, Ko} we have 

g ( R f - i e )  =  g ( P „ ( R "  -  R ° ) )  +  g ( ( I  -  P „ ) ( R k  -  R ° ) )  

< g (P»(R k  -R°) )+ g( ( i  - P*)R")  +s((/- Pn)R°)  

+ 2C2 •£ £ L '̂'(T)L LC'°(F)L 
(P,l) t=n+L 

< g (Pn(R"  -R°) )+ s( ( /  -  P„)R")  + g( ( I  -

+ 2C2 Y. II (I - P»)t%, lb II V ~ P«)K, lis 
(P.9) 

< 2  +  2g( ( I  -  Pn)R°)  + J + 2ctM Y .  II (/- lb 
(p,<?) 

< C. 
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This proves the lemma. • 

Theorem 2.5.2 Suppose U2 and V2 have full column and row rank on the unit circle 

respectively. Let Qn denote an optimal solution to vn(cz = 0) and let Rn H — U * 

Qn * V, Rl,n := Hlt — Ul*Qn* V1, z = 1,..., 7, n = 0,1,.... Then the following is true: 

(1) Rn (n = 0,1,...) is unique. 

(2) Qn (n = 0,1,...) is unique. 

(3) ||i?2,n — i?2,0j[o —^ 0, as n —• oo. 

Proof: The proof for (1) and (2) can be carried out in the exactly the same way as the 

proof for (1) and (2) in Theorem 2.5.1 and will not be repeated here. 

We prove (3) by using contradiction. Suppose the sequence {||J?2,n — /22*01|-2 }^=i 

doesn't converge to zero. Then there exists a subsequence {R1lm } of Rn and an e > 0 

such that 

\\R2'nm - /?2,0||2 > e, Vm. (2.10) 

Then by using the same argument as in the proof of Lemma 2.5.2, we can prove that 

a subsequence {Q"m*} of {Q""1} converges pointwise to the optimal solution Q° of 

problem (/(with C3 =0). Furthermore, since Q™"1*-- is the optimal solution to problem 

unmk, whose limit converges to u as k —* 00, we have 

= ci||i?l'"m*--||i. + c2||/î2,nmfc||2 -> ct||JR1'0||L 4- c2||i?2,0||| = v, as k -> 00. 

Thus, the assumptions of Lemma 2.5.3 are satisfied and it follows that 

c L | | -  R^Wt+caWR2^ - R2*0H ;  0  a s  A :  - >  00 

which is a contradiction to inequality (2.10). • 

It should be remarked that the lower bound version of Theorem 2.5.2 also holds and 

the proof can be carried out in exactly the same manner as that for Theorem 2.5.2. 
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As a concluding remark for this section, we want to point out that the GMO control 

design framework we have developed here is flexible. Given any finite numbers of 

^i/%/%oc norm objectives and TDCs, they can be directly stacked into the GMO 

problem formalism and the theoretical and numerical schemes established in this and 

the previous section can be extended in a straightforward manner to obtain the solution. 
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CHAPTER 3 NUMERICAL IMPLEMENTATION AND 

SIMULATIONS 

3.1 LMI Formulations 

In the section, we introduce some standard results in linear matrix inequalities 

(LMIs) and semidefinite programming (SDP), and show how these results can be applied 

to transform problems (2.2) and (2.3) into solvable SDP forms. 

In what follows, if L(x) is a n-by-n symmetric matrix, the (strict) inequality sign in 

(L(x) > 0) L(x) > 0 means that L(x) is positive (definite) semidefinite, i.e, (yTL(x)y > 

0 for all y ^ 0 and y E 1Zn) yTL(x)y > 0 for all y E 1Zn. In the case that L(x) is a 

vector in IV1, the (strict) inequality sign in (L(x) > 0) L(x) > 0 means that L(x) is 

componentwise (positive) nonnegative, i.e, ([L(x)](z) > 0) [L(r)](z) > 0 for i = 1,..., n. 

Lemma 3.1.1 ([35], matrix norm bound) Given a matrix A(x) = A0 +rtALH (-

XkAt E W*''. (Here A,- need not to be symmetric.) Let |[A(x)|| denotes the spectral 

norm (maximum singular value) of A(x). We have 

|A(x)|| <t (3.1) 

if and only if the following LMI in x is feasible 

tl A(x) 

A(x)r tl 
> 0. (3.2) 
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Lemma 3.1.2 ([35], LP to SDP) Given coefficients A and b for a linear program 

(LP). We have 

Ax + b> 0 (3.3) 

if and only if the following LMI in x is feasible 

where 

F(x) := diag(A:r + b) >0, 

F = F0 -f T.?=i XiFi F0 = diag(6) Ft = diag(ai), <' = 1,..., m 

(3.4) 

(3.5) 
A = [aL... am] 6 TZnxm. 

Lemma 3.1.3 ([35], QCQP to SDP) Given coefficients A,b.c. and d for a general 

quadratically constraint quadratic program(QCQP). We have 

f(x) := (Arr + b)T(Ax + b) — cTx — d < 0 (3.6) 

> 0. 

if and only if the following LMI in x is feasible 

I Ax + 6 

(Ax + b)T (Fx + d 

Lemma 3.1.4 ([12], Ho norm bound) Given G = D -t- C(zl — A)~LB. We have 

\\G\\l<« 

A asymptotically stable 

if and only if the following LMI in X and S is feasible: 

ATXA — X AtXB 

BTXA BTXB - / 

X 0 CT 

0 / DT > o 

C D S  

Tr(S) — a < 0 

X > 0. 

(3.7) 

(3.8) 

< 0 

(3.9) 
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Lemma 3.1.5 ([12], Bounded Real lemma) Given G = D + C(zl — A) lB. We 

have 

LL^LLWOO - P 

A asymptotically stable 

if and only if the following LMI in X and S is feasible: 

ATXA - X ATXB CT 

BTXA BRX B - 01 DT 

C D -01 

X > 0. 

(3.10) 

< 0 
(3.11) 

For ease of exposition, let us rewrite the definition of un in the following equivalent 

form: 

inf c\ti + c2t2 4- c3£3 
QE^UXN" 

subject to 

l|Pn(fl'(Q))l |L< t ,  

l!^3,n(Q)|| ^ ̂ 3 (3-12) 

IIQIIL<7 

||P„(P'l(Q))||i < c4 

\ \Pn(R 5 (Q ) ) \ \ l < C 5  

M,a(Q)||<C6 

QTEMP(^) ^ [-•^tempP~(Q)](^') ^ ̂ TEMP(^)> k = 0, 1, . . ., 71. 

It is clear that the above problem is a finite dimensional convex optimization program 

involving only Q(0),..., Q(n). It is also clear that the norm constraints and tem­

plate constraints are in the form of (3.3) and can be transformed into SDP constraints 

immediately by using Lemma 3.1.2. Moreover, the equivalent SDP forms for the 7i2 

and Hoo constraints can be obtained by appealing to Lemma 3.1.1 and Lemma 3.1.3 

respectively. Note if for some particular reason, ||A'(Q)||2 (i = 2,5) is desired to be 



> 0. (3.14) 
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considered in the GMO setup instead of ||A'(Q)||2, the equivalent SDP constraint form 

for ||/?l(Q)||2 < t can be established by using the following Lemma: 

Lemma 3.1.6 (Ho to SDP) Given coefficients A,b,c for a quadratically constraint 

program. We have 

f(x) := (Ax + b)T(Ax + b) — (cTx)2 < 0 (3.13) 

if and only if the following LMI in x is feasible 

(Fx Ax + b 

(.4x + b)T (Fx 

Proof: The proof is just a simple application of Schur complements and thus is omitted 

here. • 

The equivalent reformulation of un is given by 

inf C\t \  + c2i2 + C3^3 

subject to 

TREUIL < TI 

II«-(<?)II3 < T2 

\\R3m\u„<t, 

l t o l l , < 7  ( 3 ' 1 5 )  

l | f l 4 ( 9 ) l l l < Q  

l|fl5(Q)ll!<c5 

I|Â6(Q)[|H„ < c6 

ÛTEMP(fc) < [AteTnpR' (Q)\(k) < btemp(k), k = 0, 1. 2, . . . 

Q(k) — 0 if k > n. 

Given the discussion above, we shall only focus on the equivalent SDP formulation of 

the and norm constraints in (3.15). Actually we can still deal with the %2 norm 

constraints by appealing to Lemma 3.1.3 (or Lemma 3.1.6). However, Lemma 3.1.4 
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and Lemma 3.1.5 provide us with a more uniform SDP (LMI) formulation for the two 

norm constraints. Note in particular that similar techniques as in [12] are needed here 

to ascertain the finite dimensionality of (3.15). By using an alternative state space de­

scription obtained from the Youla parametrization via system Kronecker products, only 

the parameters of Q(0),..., Q(n) will be involved into the optimization and it follows 

that (3.15) is a finite dimensional convex optimization problem. Since the concrete form 

of the equivalent SDP form for un and un may vary with the change of the particular 

SDP solver used, we will not make further comments here. 

It should be noted that in the case where there is no Hoc norm involved in the 

problem setup(i.e. C3 = 0, c6 = 00) and no % norm constraint imposed on the 

closed-loop system(c5 = 0), the corresponding GMO problem can be solved in a less 

computationally expensive manner without appealing to the LMI mechanism. More 

explicitly, quadratic programming techniques can be applied to obtain the solutions 

with high efficiency and precision. For the case where neither Ho norm nor H<x norm 

involved in the problem setup, the GMO problem is simply the £\. minimization with 

TDC and constraint and it can be efficiently solved by using linear programming 

techniques. 

As a concluding remark for this section, we want to point out that the GMO control 

design framework we have developed here has a flexible structure. More explicitly, 

given any finite numbers of H-i/Hz/Hoo norm objectives and TDCs, they can be directly 

stacked into the GMO problem formalism and the theoretical and numerical schemes 

established in this and the previous section can be extended in a straightforward manner 

to obtain the solution. 



34 

3.2 GMO vl.O Package 

It is clear from the definitions (2.2) and (2.3) that only the parameters ofQ(O),..., Q{n) 

enter into the optimization of vn and un. Thus (2.2) and (2.3) are actually two finite 

dimensional convex programming problems and by appealing to the LMI formulas pro­

posed in [35] and [12], they can be readily transformed into solvable SDP forms and 

be effectively solved by using some well-developed SDP techniques. In the case where 

there is no Hoc norm involved in the problem setup (i.e. Cz = 0, c6 = oo) and no Ho 

norm constraint imposed on the closed-loop system(c5 = 0), the corresponding GMO 

problem can be solved in a less computationally expensive manner by using quadratic 

programming techniques. For the case where neither H2 norm nor Hoc norm is in­

volved in the problem setup, the GMO problem can be efficiently solved by using LP 

techniques. 

It should be noted that the GMO control design framework we have developed 

here is flexible; given any finite numbers of d-i/Ho/Hoc norm objectives and TDCs, 

they can be directly stacked into the GMO problem formalism and the theoretical and 

numerical schemes established in this and the previous sections can be extended in a 

straightforward manner to obtain the solution. 

A Matlab based subroutine package([39]), GMO 1.0, has been accomplished by the 

authors to implement the proposed algorithm for synthesizing (sub-)optimal controllers 

for the general multiobjective (GMO) control problem involving norm, H2 norm, H00 

norm, time-domain constraint (TDC), and controller structure constraints. By using 

this package, several multiobjective design problems from the literature have been solved 

(see [39]) to demonstrate the effectiveness of the proposed framework and the software. 
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3.3 Illustrative Examples 

In this section, we present several examples from the literature to illustrate how 

to use GMO 1.0 package to compute multiobjective (sub-)optimal controllers. All the 

simulation results shown here were obtained by using GMO 1.0 package on a PII-

350/312MB/Win2000 personal computer system under Mat lab 5.3 environment. For 

ease of understanding the notations to be used in this section, we have placed in the 

appendix a simplified version of the user manual for GMO 1.0 package. 

3.3.1 An £\/Hoo example 

Consider the example of the Ci/Hoo multi-block problem addressed in [19]. The 

problem setup is as follows: 

O.I 

Figure 3.1 Block diagram of the C-i/Hoc example 

F I A ) . N  1 5 ~ ! 0 A L „ TWO- 04A 
(1 — 10A)(1 — 0.5À) LX 7 1-0.6A n ifi) 

The optimization problem of interest is {min\\ 0 ||i : || ^ ||^, < 37}, where <]> is the 

transfer matrix from wf := [nL n2] to z[ := [yL U2] and ^ is the transfer matrix from 

W2 := [r d] to zj := [y u] respectively. With an FIR length of three (lenqind=3), 

the GMO routines yield a pair of lower and upper bounds [72.5960, 73.0380] with 
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|| $ ||L = 72.8220 achieved by a 9th order unstable suboptimal controller. The 

performance of the # subsystem is 36.9583. These results coincide with those obtained 

in [19], where the optimal performance is computed to be 72.6418 achieved by a 14th 

order optimal controller. 

3.3.2 Active suspension control 

The active suspension control design for transport vehicles ([2], [40], and [41]) aims 

to handle the following conflicting goals: 

1. low levels of acceleration for the comfort of drive and cargo (isolation goal), 

2. bounded suspension deflection (connection goal), 

3. bounded tire deflection (connection goal). 

Besides the above requirements, in practical implementations, the actuation system of 

the suspension control system should also be limited not to require and dissipate too 

much power so as to avoid the cooling problems and to make the system more efficient. 

Besides average power, the peak value of the actuator force generated by the controller 

should also be limited to avoid large equipment costs. 

The problem proposed above can be formulated into a multiobjective control de­

sign problem involving t\ and %2 norms. Consider the following two DOF (degree-of-

freedom) rear suspension system model ([40]): 

M2<Z2 + 62(92 — 9I) + ̂ 2(92 ~ 9L) = F 
\6.\i) 

rriiqi + 62(91 — 92) + ko(qi — 92) + 61(91 — 90) + ̂ i(9i — 9o) = —F. 

In the above equations, mi = 1.5e3kg denotes the mass of tires, wheels, and real axle. 

m2 = h.lôeZkg denotes the sum of mass of the chassis and a half-loaded semitrailer. 

bi = 1.7e3iV/m and 62 = 5e3N/m represent the tire and suspension damping coeffi­

cients while kt = 5e6N/m and ko = ôe5N/m denote the tire and suspension stiffness 
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respectively, go, Qi, and go are road level, suspension displacement, and semitrailer 

displacement respectively. 

By a suitable choice of states, the above model can be transformed into a fourth 

order state space model. According to the required performance specifications, after 

incorporating suitable weights, the system can be transformed into the following open-

loop generalized plant setup that is amenable to control design purpose: 

w m Z W 

" W 
Gsys YW 

Figure 3.2 Open-loop system of the suspension control example 

where we choose the exogenous input to be w := <70, control input to be u := F, 

measured output to be yT := [92 qo — <?i], and the controlled output to be zr := 

[q2 Ç2 — <Zi 9i — Ço F}. Note that in this setup, w denotes the road surface level, and z 

consists of the vertical acceleration qo, suspension deflection qo — gL, tire deflection or 

dynamic tire force çL — q0, and actuator force F. 

Assume that w = q0 denotes a given deterministic-and-stochastic mixed road profile 

with a known /œ bound and a (spatial) power spectral density (incorporated into the 

generalized plant as a weight already), then according to the arguments above, the 

following control design would be of significant interest to designers: 

inf ||/2ZlU;(Q)||i 

subject to 

llflw.ll l <C2 (3-18) 

II-R:3™I!L ^ c3 

1 — c4 
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where c,-(i = 2,3,4) are certain parameters to be chosen. Note here we choose to 

minimize the %2 norm to address the comfort performance requirement of the driver 

and cargo. To ascertain the achievable ranges for Cj, we can first carry out the following 

study of performance limits: 

c°:= inf \\R; iW(Q)\\p (3-19) 

where ||.||p denotes "Ho norm for i  = 1 and i \  norm for i  = 2,3,4. This set of problem 

can be readily solved by using G MO routine (for more details, please refer to the GMO 

1.0 user manual in the Appendix) and the design yields c° = 0.1701, c° = 0.1660, and 

= 0.0082 and the best achievable % norm of R:iw is 0.0665 while the other three 

channels achieve performance of 0.6733, 0.7296, and 0.0419 respectively. According 

to the minimum achievable t\ performance obtained above, ct-(z = 2,3,4) are chosen to 

be 0.6, 0.6, and 0.1 in (3.18). 

The final resulting %2 performance of (3.18) is 0.0729 with l\ performance of 0.6026, 

0.6037 and 0.0333 in other three channels. It is clear from this example that GMO 

routine has a flexible structure and various control system design demands can be 

easily captured in its framework. 

3.3.3 Optimal Control Design for a 3-nodal ABR Network 

Consider the schematic in Figure 3.3, that depicts a network of three nodes. The 

purpose of the model is to study various aspects of coordination control between var­

ious nodes and its relation to the information structure. An associated application is 

congestion control in the case of an available bit rate (ABR) communication network 

([42]). 

In Figure 3.3, ri,r2 and r3 denote the flow rates from data sources into network 

nodes 1,2,3 respectively, n2 denotes the rate of flow from node 1 to node 2 and r23 
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Node 2 Node 1 Node 3 

Sources 

Sources 
Source: 

One-step delay 

One-step delay One-step delay 

Figure 3.3 3-nodal ABR Network 

denotes the rate of flow from node 2 to node 3. w represents the total capacity available 

for the three data sources, ç, denotes the buffer length at the ith node. The network 

exerts control over the network traffic by assigning the rate for each data source. In 

particular, there are three (nodal) subcontrollers Ci, Co, C$ that dictate respectively ri, 

(^i2:ro), and (r2i, r3). Moreover, there is a one-step delay in passing nodal information 

(gt) from one nodal subcontroller C, to its preceeding one Cj_1, while each Cz- does not 

receive information from the previous nodes Ct+i. The goals are to prevent the node 

buffers from overflowing so as to avoid possible data loss ('stabilization goal'), and to 

optimally utilize the available transfer capacity w such that the sum of the data rates 

ri(i — 1,2,3) matches w as closely as possible ('optimality goal'). 

For this system, the exogenous input signal is identified as the available capacity w. 

The control input, and measured output signals are identified respectively as: 

• u = [ rL rio ro r23 r3  \T  
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• y = [ 9i 92 <73 ]T. 

The goal of the congestion control for the above network can be captured by adopting 

the following signal identification for the regulated output: 

• 2 = [ Çl 92 93 T y — W - a y  T o  —  w  •  C L o  r3 — W • as ] T .  

where at is a prescribed constant representing the ratio of available resource assigned 

to ith source. 

Suppose also that steps are the typical exogenous input signals w we would like 

to optimally track. Then, we can impose TDCs on Zi{i = 4,5,6) such that the step 

response of Zi(i = 4,5,6) is forced to stay within a prescribed envelope. In the sequel we 

consider the coordination of the network operation around a desired equilibrium point 

where the queues at the nodes and the traffic rates are at a desired non-zero, positive 

level. The linearized fluid model nodal dynamics that we adopt are given by: 

• Node 1: qi(k + 1) = gt(fc) + rL(fc) - rl2(/c) 

• Node 2: g2(fc + 1) = g2(fc) + r2(fc) + rl2(fc) - r23(k) 

• Node 3: q3{k + 1) = 93(A:) + r3(k) + r23(k) — w(k) 

There are three local controllers corresponding to the three nodes such that the 

controllers are required to satisfy the following structural constraints: 

• Ci: rL  = A (91, Ag2, A293) 

, r 12 = /l2 (92^93) 
Co" 

r2 = A (92, A93) 

• C3: < 
r23 — /23(93) 

r3 = /3(93) 
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where the various /t- ancl fij are (causal) linear operators and A is interpreted as the 

one step delay operator. 

Clearly, the plant Goo and the controller K are upper triangular operators of the 

following form: 

* * * * * 

G22 := 0 *
 

*
 * * 

0 0 0 *
 

*
 

1 

(3.20) 

In this example we provide a tradeoff study between iy and Ho performance of the 

closed-loop system by solving the following multiobjective problem: 

£/:= inf c1||fi(/v)||i+c2||^(A0||I 

subject to 

K is stabilizing 

K satisfies structural and delay constraints (3.20) 

Zi(i = 4,5,6) satisfies prescribed TDCs. 

where cL and c2 are prescribed weighting constants. Following the framework established 

in [7] and [8], we now detail the procedure of how the upper block triangular structural 

constraints on K as specified in (3.20) are transformed to the same structural constraints 

on Q. 

* z\* 

0 * x\* 

0 * A* 

0 0 * 

0 0 * 
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The state-space description of G22 is given by 

Ai 0 0 Bi B\2 0 

0 a2 0 0 Bo B03 

A B 0 0 A3 0 0 b3 

c D CL 0 0 0 0 0 

0 Co 0 0 0 0 

0 0 c3 0 0 0 

where 

A i = Ao = A3 = 1, Ci = C2 = C3 = 1 

By — 1, JB\2 = [—1 0], Bo = [1 1], B23 = [-1 0], £3 = [1 1]. 

The state feedback and observer gain matrices F and L for G22 are chosen to be 

F = 

FL 0 0 

0 Fo 0 

0 0 F3 

z. = 

Lx 0 0 

0 Lo 0 

0 0 L, 

where 

Ft = —0.90, F2 = F3 = [0 — 0.9]r, Li = Lo = L3 = —0.90. 

This choice of F and Z, guarantees that A + BF and A + LC are stable matrices. The 

first four doubly-coprime factors of the plant ([3]) are given by: 

Yr := 

-0.81A 
1-0.1A 0 0 

L+0.8A 
1—0.IA 

-0.9A 
1-0.1A 0 0 0 

0 0 0 0 1 0 0 0 

0 -0.81A 0 £
 

li 0 
0.9 A 1+0.8A -0.9A 

0 0 L-O.IA 0 £
 

li 0 1—0.LÀ 1-0.LA 1—0.LA 0 

0 0 0 0 0 0 1 0 

0 0 -0.81A 0 0 0 0.9 A L+0.8A 
0 0 1-0.LA 0 0 0 1—0.IA t-O.lA 
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1+0.8A 
1-0.IA 0 0 

0 
1+0.8A 0 0 l-O.LA 0 

0 0 
1+0.8A 
l-O.IA 

, M- := 

-A A 0 1—0.IA L-O.LA 0 

0 — À -A 0 L-O.LA _ L-O.LA 

0 0 0 

0 

A 

0 

0 L-O.LA 

X  — A  
L—O.IÀ t—O.LÀ 

We define a class of transfer matrices as 

Tn ATi2 — 

To2 AT23 

T := {T = T33 

A n"lT, In 

where Ty's are matrices of compatible dimensions. We can see clearly that the set T 

is closed under the addition, subtraction, and multiplication for any two elements of 

Tij that have compatible dimensions. Moreover, using the adjoint formula, it is easy to 

see that the inverse of any nonsingular element of 7" also belongs to T. Noting that 

Yr. Dr, Xr and Nr are elements of T and that ([3]) 

K =  (Y r  -  D r Q)(X r  -  N r Q)- \Q  =  (KNr  -  Mr)~ l (KX r  -  Y r ) ,  

we infer that Q admits the structure described by (11), if and only if K admits the 

same structure. 

Therefore we conclude that for this example, the structural constraints on the con­

troller K transform to the same constraints on Q. Hence we equivalently formulate 

problem u as: 

*:= inf ci||fl(0)l|i+c2||fl((3)||i 

subject to 

Q is stable 

Q e T  

Zi{i = 4,5,6) satisfies prescribed TDCs. 
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For simplicity, the fairness index a; is taken to be aL = a2 = a3 = 1/3 and the 

upper bounds of ||Q||i are chosen to be 7 = 100. For a given increasing sequence of 

nonnegative ratios of co/cL(7 points), the auxiliary problem of u was solved by using 

GMO 1.0 package and the optimal Youla parameters and the values of ||A(Q)||i and 

||J?(Q)||2 were obtained. For all pairs of cL and c2, the norms of the optimal Q's are 

far less than 7 (typically ||Q||i < 1). This shows that the extra norm constraint on 

Q is inactive and problem u and its auxiliary problem admit the same optimal cost. 

2.3 

Tradeoff curve for I, and H performance (3^=3^=3^=1/3) 

2.2 • 

2.1 

l :  
S 1.8 

1.7 

1.6 

1.5 
0.8 

ci=1' c2=0-01 ( 

C^—1, Cg—1 

c^=i,Cg=o.oi ifr 
I 
I 

Delayed-decentralized Design 

Centralized Design 

+ / 
C1=1,C2-1 ^ Cl=0.01,c2=1 

0.9 1.1 1.2 

Optimal I performance 

1.3 

c,=0.01, c2=1 

1.4 1.5 

Figure 3.4 Tradeoff Curve between ii and Ho performance 

The plots of ||i2(Q)||i versus ||A(Q)||2 are shown in Figure 3.4, where the dashed 

curve denotes the cases of centralized design with no information transfer delay while 
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the solid curve denotes the cases where there exists transfer delay in the feedback 

path, as illustrated in Figure 3.3. From these two curves, important information on 

the tradeoff among system performance specifications are obtained. For example, it is 

clear that each of these two curves denote exactly the boundary between achievable and 

unachievable performance specifications of the closed-loop system. The region above the 

curve denotes the performance requirement that can be achieved by some stabilizing 

controller while the region below the curve represents the specifications that cannot 

be obtained by any stabilizing controller. Moreover, it can be concluded that for this 

example, the structure constraints imposed on the stabilizing controllers as specified in 

(3.20) induce a significant loss of the closed-loop system performance. 

From: q_1 From:q_2 From: q_3 

Number of Sample 

Figure 3.5 Impulse Response of Centralized Controller 

The impulse responses of the centralized sub-optimal controller (case ci = c2 = 1, 

performance tolerance S = 0.01), and the decentralized, delayed sub-optimal controller 
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From: q_1 

CVJ 

5 

CO 

B 0 

-1 

10 20 

From: q_2 From:q_3 

0 10 20 0 

Number of Samples 

10 20 

Figure 3.6 Impulse Response of Decentralized, Delayed Controller 

(case Ci = c-i = 1, performance tolerance S  = 0.01) are plotted in Figure 3.5 and Fig­

ure 3.6, respectively. From the last figure, it can be clearly observed that the structural 

constraints imposed on the stabilizing controller are satisfied. That is, the controller 

admits the upper block triangular structure specified in (3.20) while the centralized 

controller does not admit such a structure. The order of the Youla parameter Q is 3 

and the order of the corresponding decentralized, delayed sub-optimal controller is 6. 

In Figure 3.7, the step response of the closed-loop system with decentralized, delayed 

controller is plotted, where the dash-dotted lines denote the TDC envelops imposed on 

the step responses of Zi(i = 4,5,6). It is clear from the response plots that the time 

response of zt-(z = 4,5,6) satisfies the requirement of zero steady value, which implies 
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From: w 

n -0.2 

H -0.4 

CM 

co. 

-2 

£ -0.5 

° -0.5 

0.5 z 

Number of Samples 

10 12 

Figure 3.7 Step Response of Closed-loop system with Decentralized, De­
layed Controller 

that the optimality goal of the congestion control mechanism is achieved. 

3.3.4 Multiobjective design 

This example is taken from [17] and [16]. The control objective is to minimize the 

Ci Hoc + || C2 ||oo performance for the unstable system: 

f ... \ -i 

y 

' A  B "  

C  D  

Wi 

Wo 

\u} 
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0.5 1 1.5 1 10 0 r i -

0 0 10 0 0 0 
-1 3 2.1 2 0 0 0 

= ,  B = • C = 10 0 0 ,D = 0 0 0 
1 -1 -0.6 1 0 1 0 

0 0 0 1 0 0 0 
- 2  2 - 1 1  0 0 1 

where Ci and Co represent the two performance channels from wi to Zi and wo to Zo 

respectively. 

By calling GMO routines (lenqind=12, beta=10000), a lower bound and an upper 

bound of the Hoa performance sum can be computed to be 114.4058 and 115.6487 

(Il Ci ||oo = 65.5327, || Co ||^ = 50.1160) respectively. The compensator obtained by 

GMO is a 2It h order unstable controller (Figure 3.8). 

3.3.5 F16 longitudinal control design 

Originally studied in [43], the AFTI F-16 control problem aims to synthesize an £L 

robust optimal controller for the longitudinal dynamics so as to achieve certain track­

ing performance while satisfying constraints on control deflection, control rate, and 

requirements on overshoot and undershoot specifications. 

Specifically, the tracking problem is to accurately command a 1 — g normal accel­

eration of the aircraft while the stabilator is limited to ±25deg deflection angle and 

±60deg/s deflection rate ([43]). The aircraft model used in the paper consists of an 

actuator servo Ga and the linearized longitudinal equation of motion Gp and the con­

tinuous system is a concatenation of these two components. Since the discrete-time 

nature of the controller calls for the sampled-data system implementation, the con­

tinuous system GpGa is discretized at 30Hz using a zero-order holder (ZOH). All the 

simulations are conducted within this hybrid system framework and a step reference 
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Frequency response of the 21th order controller — Hinf+Hinf design 

m 10 

Frequency (radians/second) 

Frequency responses of C1 and C2 — Hinf+Hinf design 

m 10 

||C, ||=65.5327 

10-' 10" 10'  

Frequency (radians/second) 

Figure 3.8 'K00JrH0a design results 
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Frequency response of the controller K — F16 11/TDC design 
,2 

10' 

10 

c 
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10 
10 

Frequency (radians/second) 

Frequency response of the sensitivity S — F16 11/TDC design 

r z  W ic 
Frequency (radians/second) 

Figure 3.9 F16 longitudinal design results (a) 
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Step response of the sensitivity S — F16 11/TDC design 
T 1 1 1 1 I I 

temp 

Steady error=0.0007 

a lemp 

I I I ' I I L_ 
0.2 0.4 0.6 0.8 1 1.2 1.4 

Time (seconds) 

Step response of the complementary sensitivity T — F1611/TDC design 

Steady error = -0.0006 

0.5 1 1.5 
Time (seconds) 

Figure 3.10 F16 longitudinal design results (b) 
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0.05 
Step response of the control action KS — F16 11/TDC design 

o -0.15 

.O -0.25 

-0.35 

Time (seconds) 

Step response of the control rate WcKS — F16 11/TDC design 

Time (seconds) 

Figure 3.11 F16 longitudinal design results (c) 
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input of 1 — g normal acceleration is applied at 0.3 second(simulation time) to evaluate 

tracking performance. 

To achieve the desired tracking performance, TDC template atemp and b t e m p  are 

chosen in such a manner that step response of sensitivity function S is forced to converge 

to zero as the system proceeds into the steady state. With lenqind = 25 and beta = 100, 

GMO routines yield an t\_ performance of 2.2127 achieved by a 15th order (sub-)optimal 

controller. It is interesting to note that there is an integrator (a pole at 0.9966) in this 

controller, which verifies the result (steady error of —0.0006) shown in Figure 3.10 from 

a different point of view. 

Note that to effectively take out the derivative of the control signal, a discrete-

time transfer function (the 'backward Euler transformation') Wc(z) = (z — 1 )/Tz (T = 

l/30sec) was applied on the stabilator deflection to generate time-response output in the 

simulink diagram. The frequency-domain and time-domain responses of the ty/TDC 

design are plotted in Figure 3.9, Figure 3.10, and Figure 3.11. Note that to reduce 

the control action and control rate magnitude, we choose atemp(l) = atemp(2) — 0.2 in 

the lyjTDC design to prevent the control action becoming too large during the first 

two sample periods. It is clear from the step response curves of sensitivity 5, control 

action KS, and control rate WCKS that this objective has been effectively achieved. 

As a conclusion, the control design has yielded satisfactory tracking performance while 

satisfying all the prescribed constraints (compared to those obtained in [43]). 

3.3.6 X29 pitch axis control design 

To achieve certain desirable aerodynamic characteristics, the wings of the X29 air­

craft are designed to be in the forward-swept shape. This renders better maneuverabil­

ity to the aircraft when compared with classical wing design while leaving the aircraft 

statically unstable ([3]). The control objective for this plant is to design a stabilizing 
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discrete-time controller to minimize l\ norm of the transfer function from the distur­

bance w injected at the plant output to the weighted control signal zi and the weighted 

output Zi-

W\KS 

W2S 
inf 

K  stabilizing 

In this example, for the illustrative purpose, we choose IV\ = 0.01 and Wo as a digital 

Butterworth 2nd order low-pass filter with cut-off frequency 0.1 (rad/sec). Under this 

setup, GMO design yields a 32th order (sub-)optimal controller with performance 

1.1140 (Dashed curves in Figure 3.12, 3.13, 3.14). Noticing that the step response of 

the sensitivity function bears an norm of 2.3647 and a steady error of 0.3901, we 

intend to improve the tracking performance by solving the following problem: 

inf 
K  stabilizing 

WJCS 

WoS 
• ^temp{k) ^  S * stepln(k) ^  ̂ £emp(^') î ^k 

where stepln denotes a step and atemp and b t e m p  are two prescribed time-domain tem­

plate constraint (TDC). In this example, they are chosen such that the maximum 

absolute magnitude and the steady error of step response of S are constraint within 1.5 

and 0.002. 

The GMO design yields an ti performance of 1.6227 and the step response of the 

sensitivity function S yields a steady error of —0.0009 with an maximum absolute 

magnitude of 1.5000 (Solid curves in Figure 3.12, 3.13, 3.14), which implies the desired 

tracking performance has been achieved. It is interesting to note that there is also an 

integrator (a pole at 1.0000) in the resulting suboptimal controller, which substantiate 

the results shown in 3.14 from a different viewpoint. 
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Frequency response of the controller K — X29 design 

Solid: 11/TDC design 
11 norm=1.6227 

« 10" 

O) 

Dashed: pure 11 design 
11 norm=1.1140 

Frequency (radians/second) 

Frequency response of the sensitivity S — X29 design 

Dashed: pure 11 design 

•Sio' 

O) 

_l 10 

Solid: 11/TDC design 

Frequency (radians/second) 

Figure 3.12 X29 pitch axis design results (a) 
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Frequency response of the weighted control action W1 KS — X29 design 

Dashed: pure 11 design 
11 norm of W1KS =1,1094 

Hinf norm of W1 KS = 1.0749 

•) 

oi 

Solid: 11/TDC design 
11 norm of W1KS =1.6223 

Hinf norm of W1KS =1.4243 
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Frequency response of the weighted sensitivity W2S — X29 design 
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Dashed: pure 11 design 
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11 norm of W2S =1.6227 

Hinf norm of W2S =1.1662 

.-3 10 
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Figure 3.13 X29 pitch axis design results (b) 
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Step response of the control action KS — X29 design 

Solid: 11/TDC design 

3 
§ 

Dashed: pure 11 design 
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Step response of the sensitivity S — X29 design 
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Figure 3.14 X29 pitch axis design results (c) 
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3.4 Conclusion Remarks 

In this chapter, we have discussed the numerical implementation of the proposed 

GMO controller synthesis algorithm, and have illustrated the effectiveness of the pro­

posed algorithm via several numerical examples. It is clearly seen that, by employing 

the proposed control synthesis tool, designers can now obtain robust optimal controllers 

that satisfy multiple criteria simultaneously in a straightforward manner. For example, 

to achieve certain desired system time response properties (such as rise time, overshoot, 

steady-error, etc.), the designers only need to shape the two time-domain constraint 

templates in the control synthesis optimization. In this way, any controller the de­

signers obtained is guaranteed to be stabilizing and satisfies the desired time response 

performance. This avoids the ad-hoc effort inherent in the conventional methods and 

makes straightforward the synthesis of the desired multiobjective optimal controllers. 
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PART II 

INTEGRATED PARAMETER AND CONTROL 

(IPC) DESIGN 
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CHAPTER 4 NOMINAL PERFORMANCE WITH 

POLYNOMIAL DEPENDENT PARAMETERS 

In this chapter, the integrated parameter and control (IPC) problem is considered 

where the system parameters are assumed to enter into the state-space realization in 

a polynomial manner. Converging finite-dimensional sub-optimal problems are con­

structed and solved via a linear relaxation technique, whereby a global optimal solution 

to the IPC problem can be computed to any prescribed tolerance. 

4.1 Motivation 

Conventionally the design of a controlled system is a separate two-step procedure: 

First, the plant is designed to satisfy certain desired static and dynamic properties. Sec­

ondly, controller is designed to satisfy closed-loop performance specifications. However, 

in this procedure, there is no guarantee of the optimal closed-loop system performance 

with respect to the possible choice of plants and controllers. It has been well recognized 

that system structure design and feedback control synthesis are not isolated processes 

([44]). The plant design and the controller synthesis procedures are naturally iterative 

in a sense that good modelling should take into consideration the knowledge of the 

controller, and a good control design should (ideally) yield directions on how to modify 

the model to achieve the best possible performance. Due to the increasingly demand­

ing performance requirements imposed on designing today's engineering systems, it is 

well-motivated to develop a systematic framework to conduct system structure design 
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and control synthesis simultaneously. 

Research efforts towards this direction have yielded many algorithms to synthesize 

a stabilizing controller achieving certain optimal performance and to select the corre­

sponding system structure parameters that affinely enter into the system dynamics. 

In particular, several numerical optimization based procedures have been proposed in 

[45], [46], and [47] to tackle the IPC design problem. The common practice in these 

approaches is to carry out the design in an iterative way. That is, the control design and 

plant design are repeated one after another until a certain tolerance is achieved. These 

approaches often yield better closed-loop performance than the traditional two-step 

methods. However, due to the non-convexity of the problem, these iterative algorithms 

usually yield a sequence of non-increasing upper bounds and do not guarantee the 

convergence of the bounds to the global optimal solution. 

Recently a new methodology was proposed in [48] to solve the IPC problem where i \_ 

norm or % norm were taken as the performance objectives and the system parameters 

were assumed to enter into the system dynamics in a polynomial manner. Evolving 

from the solution to the IPC design problem as in [48], in this paper, the simultaneous 

system and control design problem is considered for the case where plant parameters 

enter into the system in a rational manner. VVe show that globally convergent sequences 

of upper and lower bound problems can be formulated and solved efficiently for the IPC 

design problem, whereas the limitations inherited in the iterative design methods can 

be eliminated and a global optimal solution can be obtained within any prescribed 

performance tolerance. 

The outline of this chapter is as follows. In Section 4.2, we formulate the problem 

setup and the converging sub-problems. In Section 4.3, we transform the nonlinear 

sub-problems into a more manageable expression. In Section 4.4, we show that the 

solutions to these sub-problems can be effectively computed by solving a relaxed linear 
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programming problem combined with a branch and bound algorithm. In Section 4.5, 

we summarize this chapter. 

4.2 Problem Formulation 

Consider the setup in Figure 4.1, where G : [tu; u] —> [z; v\ is the generalized discrete-

time linear time-invariant plant, K is the controller, w, z, u, and v are the exogenous 

input, regulated output, control input, and measured output of dimensions nw ,  n z ,  nu ,  

and nv, respectively. 

Figure 4.1 Closed-loop system 

Suppose G has the following realization: 

G{p) := 

.4(P) 

Ci(p) 

<%(p) 

Bi{p) bAp) 

D u { p )  D i 2 ( p )  

&2l (p) £*22 (p) 

where p = [p\ pm]T  E Rm ,  and each entry g{p) of G ( p )  is a p-degree polynomial of 

the form: 

m m 

9{p) =Y.foP9> p° =  IIp/» 0 5  Oj <P, ^Oj=(f>e {0, l ,2 , . . . ,p}.  
J=1 J=1 

where fg is the coefficient of the (p-degree monomial p°. 

Given two m-dimensional real vectors p = [pL * * • Pm ]T  and p = [pt — pm]r. In 

the sequel, we use the notation p < p < p or p 6 [p, p] to denote the set of inequality 
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relations { p .  <  p i  <  p t , i  = 1, Assume that (A(p),B2(p)) is stabilizable and 

( A ( p ) ,  C i ( p ) )  is detectable for any p E [p,p\- The problem to be solved is formulated 

as: 

p. := inf { \ \R(K :  p)||i : K stabilizing, p E [p, p] } (4-1) 

where R denotes the closed-loop transfer matrix from w to z. From now on, we assume 

that the feasible set of problem (4.1) is non-empty, which includes the requirement that 

the optimal cost p. be finite. 

Via Youla parametrization([3]), problem (4.1) is equivalently transformed into the 

following form: 

p := inf ||^(Q,/))||i 
Q<p 

subject to 

A(Q,p) = #(p)-(y(p)*g*y(,,) 

P < P < P  

where H E £?:Xn"\ U E V E d^v X n w ,  Q is a free parameter in £"uX"v, and 

denotes the convolution operation. In the sequel, without loss of generality, we shall 

assume that H, U, and V are finitely supported. 

Introducing an extra lL norm bound on Q([24]), we obtain the following auxiliary 

problem of p.: 

v := inf || R(Q,p)\\i  
Q,P 

subject to 

\ \Q\U<c* 

R ( Q , p ) = H ( p ) - U ( p ) * Q * V ( p )  

P < P < P -

It is clear that p. and v are closely related. If problem p. has an optimal solution, say, 

Q0, then p, = t/ for any a > ||Q0||L. If p, doesn't bear an optimal solution, then the 
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constraint ||Q||i < a plays the role of a regularizing condition such that u always has an 

optimal solution with a reasonable bounded gain. Thus in what follows, we shall solely 

focus on problem u. Two sequences of lower and upper bounds of u are then given by: 

vn := inf \\PnR(Q,p)\\i 
Q y P  

subject to 

I IQII i  <  a  

R ( Q , p ) = H ( p ) - U ( p ) * Q * V ( p )  

P < P < P-

un := inf ||fi(Q,p)||i 
Q-P 

subject to 

I IQII i  <  a  

p < p < p -

Qk = 0 if k > n. 

Following the same argument as in [50], it can be be shown that un and un mono-

tonically converge to u from below and above as n goes to infinity. In what follows, 

we shall demonstrate how to solve these finite-dimensional non-convex problems. The 

development will be based solely on un, but the same technique also applies to the 

solution of un. 

4.3 Reformulation 

In this section, we shall demonstrate that, by introducing two sets of auxiliary 

variables, the non-convex problem to be solved can be reformulated as an optimizing 

problem with linear and non-linear constraints, where the non-linear constraints are of 

the type x = yz for variables x, y, and z. 
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Let the following be the corresponding state-space representational]) of H, U, and 

V :  

H s s { p) = 

Uss( p )  =  

V*s(p) = 

Anip) | Bf{(p) 

CFI(p) ! Dh(P) 

A ( p )  + B2(P)F ~B2(p)F B l i p )  

0 A ( p )  +  L C a ( p )  B l i p )  +  L D o i i p )  

C\.{p) + Dn{p)F — D i 2 ( p ) F  D n i p )  

Auip) Buip) A i p )  +  B o i p ) F  | —B2(p) 

Duip) C l i p )  +  D i o i p ) F  \ ~ D i o i p )  

Avip) Aip) 4- LCiip) I Blip) + LD 2I i p )  

D v i p )  _  Coip) i Au ip) 

where we assume the existence of a pair of feedback gain F and observer gain L that 

stabilize the system for any p € [p,p]- Note that if A(p) is assumed to be stable for any 

feasible parameter vector p, then the zero controller (F = 0. L = 0) are to be chosen 

in the above realizations. By the definition of the impulse response for discrete-time 

systems, we infer from the above state-space representations that any entry Hij(k) of H 

is a polynomial of p, and so are Uij{k) and Vij(k). In what follows, for ease of notation, 

we sha l l  use  SLJ to  denote  S, •_ , (&)  fo r  any  var iab le  S in  f j " x r l  or  C q L X T L .  

It is easy to see from the definition of un that only the parameters of Rq
c, .... 

involves in the optimization of vn and so, in what follows, we shall develop a new 

formulation for these variables. By Lemma 1 of [24], the bth-row ct/l-column entry Rbc 

of the closed-loop map R can be characterized as follow: 

where 

Wbck(p) 

Z"(p) 

Bg{Q,p) = Hf(p) - (W<**(p),Q) 

vJM)*K(t>) = {ZSCM..... Z£(j>), z°*+l(p),...} e c-
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U b f .  is the bth-ro\v of of U, and VtC is the ci/l-column of V. Then it is clear from above 

that Rb£ (k = 0,1,..., n) is a polynomial of pi,..., pm (up to the degree of a constant, 

say, on) and Qs
0

l,..., Qs
k

l. 

Let 

1) Pit • • • ! Pmi P\i PlPii • • • ? Pi t - - • > Pm 

be a basis for the on-degree polynomials and let d be its dimension. Define 

r = [1 pi ... pm PI pip2 ... p°i ... p0rZ\T = [n T o  . . .  Td\T. (4-3) 

Then each element T; of F is a dj-degree monomial of the form 

m 
Ti = n p/\ 0 < 6ij < di, ]T dij = di< on. (4.4) 

j=i j=i 

Moreover, there exist indices i i  6 {1,2,..., d }  and j t  G {1,2,..., m }  (Z = 0,..., d i )  such 

that (4.4) is equivalently characterized by the following set of equations: 

n = Tio = Tilpjl  

= Ti «z+t n Pji+i 
(4.5) 

Tidi-1 ~ Tij, Pidi 

Tdi = I-

It follows that there exist constant coefficients and giSti such that Rb^ can be 

expressed as 

1=1 m *=l '=° m (4.6) 

=  H / t { I I  P j ' J }  - r  5 3  9 i s t l  {  n  P ° J J  

i j=L j=L 

Note that in (4.6), fi and gist[ are functions of the indices 6, c, and k as well. But for the 

sake of notational simplicity, these three indices are omitted in the symbolic expressions 

of fi and gistl. 
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So the problem of interest becomes 

un = inf 7 

subject to 
71 y 71 71 ti/ 71 
EE[« ' , + +« ' • " ]<« ,  E£K +  + < , - l<7  
t=i fc=o c=i fc=o (4. f ) 

Q f t  =  Q f - +  -  < # • " ,  =  t i £ c ' +  -  R b
k

c ' ~  

(4.6) 

<'+ > 0, > 0, Qf'+ > 0, Q?>- > 0, p < p < p. 

where we have used a standard change of variables from linear programming (see for 

instance [3]) to reformulate the variables and constraints of un. Specifically, the variable 

x is replaced by nonnegative variables x+ and x~ such that x = x+ — x~. Then the 

norm constraint ||Q||i < a is replaced by the constraint £"=i Hk=o[Q?'+ +Qf~] ^ 

and \\PnR(Q, p)\\i, the objective function to be minimized, is replaced by introducing 

an auxiliary variable 7 such that Efc=o[^fcC'+ "+" rfc'~] ^ 7- Ie is also useful to 

mention that the optimal solution of problem (4.7) always satisfies that either Rb
k'+ or 

Rb
k'~ is zero. 

To set the stage for the branch and bounding algorithm, we suppose that the 

r e ctangle-type set [p, p] is partitioned into M subsets [pr, pr}{r = 1...., M) such that 

[p.p] = Ur= l [pr ' ~pr\ ' where pr = [£ • • • prJT e Rm and pr = [p\-- 'pr
m]T 6 Rm. Then a 

finer grid version of problem (4.7) is defined as: 

i/n,r := inf 7 

subject to 
711; 71 71 ur 71 
Z £[«?•'* + Ql'n < <*< E I3[<'+ + R*~) < 7 
t=l k=0 c=L fc=0 (4.8) 

Q f  =  Q ? > +  - Q f R b
k

c  =  R b
k

c ' +  - R b
k ' ~  

(4.6) 

4Cr+ > 0, > 0, Qf'+  > 0, Qf~ > 0, p r  < p < p r-
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For notational convenience, we shall use the symbol # to denote the set of (7 ,  p, Rb
k
c, Rb

k'^, 

Rb
k'~, Qf, Qf'+, Qf~) E RN (AT = l+m+3n.nu,(n+l)+3nun0(n+l)) such that all the 

other constraints except the non-linear constraint (4.6) in problem (4.8) are satisfied. 

Thus problem z/n_r is equivalently expressed as: 

un,r = inf 7 

subject to (4.9) 

(4.6), (7 ,P ,RÏ?,  Qfn e * .  

To prepare for the linear relaxation scheme introduced in the next section, let us 

further introduce the following set of variables: 

Ksti := nQf (4.10) 

and it follows from (4.6) that 

E t f f i Q i p )  =  f i ^ i  ^2 Sistl^istl- (4.11) 

So problem (4.9) becomes 

un := inf 7 

subject to (4-12) 

(4.5), (4.10), (4.11), (7, A ft',«*,<%*•*, <%*•") 6 ». 

Clearly that problem (4.12) is a non-linear optimization problem and hard to solve in 

general. 

4.4 Problem Solution 

From the formulation of problem (4.12), we can infer that the crux of solving this 

problem is how to deal with those non-convex product terms present in (4.5) and (4.10). 

For this purpose, we introduce the following result from [50]: 
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Lemma 4.4.1 If the variables Xj E R satisfy the conditions lj < Xj < Uj and 

XiXj, then 

tij > UjXi + 1l{Xj — UiUj 

tij — IjXi + U{Xj — U{lj ^ 

tij ^ UjXi + liXj — liUj 

tij ^ IjXi + liXj — lilj. 

Furthermore, if variables ty E R satisfy (4-13) and xk satisfy lk < xk < uk, then 

I tij X[Xj |  ̂ j (lij li){lLj /y). 

Following (4.5) and (4.10), define 

Qiji := {{rit, T i l + l ,  Pj l + l )  E /23| Inequalities in (4.13) are satisfied with 

{tij. Xi. Xj, Ui, Li, Uj, lj) replaced by (r„, r£(+1, pi(+l, ril+l, ril+i. p^|+i, pT^)}. 

Aist/ := {(Aisti,Ti,Qf) E i?3| Inequalities in (4.13) are satisfied with 

{.tij, Xi, Xj, Ui, l{, Uj, lj) replaced by {XUtt, r£, Qf, rh a, -a}. 

where r,- and r,- are upper and lower bounds for r£ and they can be a priori computed. 

Hence from (4.12) and Lemma 4.4.1, we have 

un<r = inf 7 

subject to 

(^i'i t ' Pjl+l ) E Qijli {^iath Tit Ql ) E A 

( 4 . 5 ) ,  ( 4 . 1 0 ) ,  ( 4 . 1 1 ) ,  ( 7 , < % " , Q * - )  €  * .  

Removing the the nonlinear constraints (4.5) and (4.10), we have the following relaxed 

linear programming problem: 

u *r  =  inf 7 

subject to 

(^i( T Ti't-t-i: Pjl+l) E fiyi, {^istli T~i, Qi ) E Aist[ 

(4.11), (7, p, flf, <•", Qf, ef+, Q,"--) € *. 
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It is clear that if the relaxed problem is infeasible, then so is the problem vn,r-

If i/*r is a finite real number, then u£r < vn,r. Now we are ready to prove the main 

result of the paper. 

Theorem 4.4.1 Suppose an optimal solution of the relaxed, problem u„ r is given by: 

(T, ft n, Û, R£=, i?+, Of*, OF"). 

Then there exists a feasible solution 

(7 /«„,  p,  <+ ,  <•" ,  or ,  qF* .  qF~ ) -

for problem i/n,r (as defined in (4-9)) such that 

= 7 < "n,r < 7/eas (4-14) 

7/eas - 7 < C|pr - pr|oc (4.15) 

where C is a finite positive constant and \pr — pr|oo — max{|pf — pr. \ : i = 1,. . . ,  r a } .  

Proof: Following the definition of z/n,r in (4.9), we construct as defined in (4.6) 
m rn 

fir = EA(n%'"}+z 
t j=L j=l 

Define 

7/eas ~ max{53 H[#fcC,+ + ̂  
c=L fc=0 

where := max{fi£c, 0} and Rb^'~ := — miti{fî£\ 0}. Then it is clear that 

(7/«u, ?, <•*, oF, qF") 

is feasible for problem (4.9) and so (4.14) is established. 

To show (4.15), it is useful to observe that from the definition of u£r the following 

linear constraints hold: 

{j~ii » 1i-h ' Pjl+i ) E (Afât/, Ti, ) G Ajsti 
-r ^ ^ ^ (4.16) 
fi*0 = E fm + 53 Uisti^isti-

i 
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Furthermore, from (4.4) and (4.5), we have \TJLi 7>fij  — ilf=L Pjr This, together with 

(4.16) and Lemma 4.4.1, implies that there exist real constant Q and C[ such that 

m di 

in -nm'" !  =  i c -ns i  
j=t i=i 

< 1"^ - ThPjt\ + \Pji\\Th — n2Ph I -I 1- I II ~ PjdiPjd~~-i\ 
1=1 

^ (i)!7"'! -ï-h\\Pji ~I  + (i ) l^ ' i l l T i ' 2  —ia1 Ipj* ~Pj 2 l  

+ ••• + (1)1 n PjMja, - PLjd. 

"1=0, 

and 

In - Zil < \ p j J t  -  g j d i  I M P j r ^ l  <  - /loo, 

where $(-) is a (d, — 1)-degree polynomial of p£( and /Z. Moreover, from (4.10), (4.16), 

and Lemma 4.4.1, we have 
rn _____ m 

|Ai,«-{nS°"}Q*'l < |AM-fi<3r'l + IOnifi-IIS'"l 
j=l j=I 

< {\)-<*C[\'pr — pr|oc + ctCi |pr — pr|oo 

=: C\utl\pr — pr|oo 

Thus it follows that 

|[<r+ + <-l-[<'++ <•"]! 

= ||i$|-K|| 

< \R£-R£\ 
m m 

< 53 l/'ll^t'~~ (II p/°u}l + 53 Isistill'-V'sti — (IX K??£l 
t j=l j= t 

< 53 l/i|C't|pr — pr|oo + 52 btst£|Cxij|£,|pr — pr|oo 
i i,s,t,l 

=: CRôc|pr -pr|oo. 

Define 
fltu 7i 

C := max{52 53 CnbA 
' c=L fc=0 
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Then we have 
71 ty 71 Tlyr 71 ~ . 

7/m* - 7 = m«(E ++•"!} - "T (E E + <'"]} 
c=L k—Q c=L k=0 

< max{Z Ê |[flîc'+ + <•"] - [SF+ + Apll} 
c=L fc=0 

< cr-pru 

which completes the proof. • 

Having established the relationship between 7 and 7/eas, we can compute the optimal 

solution of un within any prescribed tolerance e > 0 as shown in what follows. First, it 

is clear that to compute a cost with an e tolerance, the number of problems to be solved 

is no larger than the order of l/em. Moreover, if the lower bound for any given sub-

grid [pr, pr] is greater than any upper bound on any other region, then we can infer that 

the global optimality must be achieved outside of [pr,pr\- This can then be combined 

with certain branch and bound algorithm to compute a global optimal solution. More 

explicitly, so long as the lower bound obtained on a sub-region of the parameter space 

is smaller than the best available global upper bound, we can further prune this region. 

This algorithm is guaranteed to converge and yield a global optimal value up to the 

given tolerance e (see [52] for more details). Hence, for a fixed tapping length n of Q, 

if un — un is less than the prescribed tolerance, we can stop the iteration and recover a 

globally optimal controller for problem u from the corresponding optimizing variables. 

Otherwise we can increase n until the desired performance is achieved. 

If the performance measure used in problem (4.1) is norm instead of norm, then 

the exactly same procedure as above would enable us the arrive at the same conclusion 

of Theorem 4.4.1 by additionally observing the fact that 

1 K'+ + - [Bp + fip-p I < C„,| [{$•* + <•-] - [iF+ + flpl I 

where is a finite constant that can be computed a priori from the known parameters. 
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4.5 Summary 

In this chapter, we have presented a global optimal solution to the IPC problem. 

The solutions are obtained by solving linear/quadratic programming problems. 
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CHAPTER 5 IPC DESIGN WITH RATIONAL 

DEPENDENT PARAMETERS 

In this chapter, we consider the integrated parameter and control (IPC) optimization 

problem where the system structure parameters enter the state-space representation of 

the system in a rational manner. Converging finite-dimensional sub-optimal problems 

are constructed and solved via a linear relaxation technique, whereby a global optimal 

solution to the IPC problem is computed within any given performance tolerance. A 

numerical example is presented to illustrate effectiveness of the proposed methodology. 

Throughout the chapter, unless mentioned explicitly, the superscript of a variable 

denotes the power of that variable, the time instant index of a variable is put inside 

braces, and all the other indices appear as subscripts. 

Suppose p  =  [ p i  -  •  •  p m ] T  E 1Zm denotes an m-dimensional parameter vector. We 

use the notation p < p < p or p E [p, p] to denote the set of inequality relations 

{p. < pi < pit i = 1, - - -, m}, where p = [pt ••• pJT and p = [pL pm]T are any two 

given m-dimensional real vectors. 

5.1 Problem Setup 

Consider the setup shown in Figure 5.1, where G : [u/; u] —> [z; u] is the generalized 

linear time-invariant plant, K is the controller to be designed, w, z, u, and v denote the 

exogenous input, regulated output, control input, and measured output of dimensions 

nw, n~, nu, and nv, respectively. 
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w Z 

u G V 

K * 

Figure 5.1 Closed-loop system 

Suppose the generalized plant G admits the following state-space realization: 

A{p) } By{p) Bo(p) 

G  : =  C d p )  I  D n ( p )  D n { p )  

Co(p) ! Doi(p) Dooip) 

where p = [pt • • • pm\T E 1Zm is a bounded parameter vector of interest such that 

P < P < P for prescribed lower and upper bounds p and p- Possible candidates of p 

include the mass, stiffness, damping coefficients of a mechanical system, the coefficients 

of the weighting functions for the robust control problem, and the sampling time of a 

sampled-data digital control system. 

To ease the notation, we stack all the entries of the generalized plant G ( p )  into a 

single vector variable g such that 

where m = (nw  + nu) - (n. + nv).  Each entry gi is assumed to be a rational function of 

p of the form: 

9 := [<7i 92 ... 9tn F E K™ 

Sfc £ik®ik (5.1) 
9i Ei/aTi, 

where 

©i* :— IljLt Pj j 1 Kikj — <Pifc E {0,1,.... (fi}, 

Tii := fi °iZj = E {0,1,.... tp}, 



eik is the coefficient of the p^-degree monomial ©,* in the numerator of yt, and 

is the coefficient of the ^-/-degree monomial Tu in the denominator of g,. Without 

loss of generality, we assume that there exists a positive constant 0 such that all the 

denominators of g{s are bounded as follows: 

I Hi fitful > /? > 0, Vp 6 [p, p], Vz G {1,2,..., .m}. 

Moreover, as a necessary condition for the existence of stabilizing controllers, we assume 

that (A(p), Bo(p)) is stabilizable and (.4(p), Co(p)) is detectable for any p in the Tri­

dimensional hyperrectangle [p, p]. The procedure of how to verify these two assumptions 

will be clarified in the next section. 

Problem Statement 

The integrated parameter and control synthesis problem considered in this paper is 

to compute a global optimal solution to optimization problems of the following form: 

u  : =  M  f o b j ( $ , Q , p )  Q,Q,p 

subject to IIQUi < 7 . 

P < P < P  

^ = /con (Q : P) 

where f0bj is a rational function of the vector (<&, Q, p), fcon is a rational function of the 

vector [Q, p), 7, p and p are constants of appropriate dimensions. Here the vectors <&, 

Q, and p, are assumed to be finite dimensional. 

The formulation defined in (5.2) incorporates the finite dimensional approximations 

of several important IPC synthesis problems as special cases. Explicitly, we shall show 

that the finite dimensional approximations of £1 and H2 IPC design problems can be 

formulated into the form of problem (5.2). Moreover, the finite dimensional approx­

imations of the robust IPC synthesis problem can be also posed into optimization 

problems of the form of (5.2). 



£i IPC design problem 

The i\ IPC design problem is formulated as follows: 

" : = l l* lk  

s . t .  H Q H i  <  7  ( 5  3 )  

P < P < P  

<f> = H(p) — U(p) * Q * V(p) 

where H 6 l?-xn"\ (7 6 £":Xn", V G £?uXriu\ Q is a free parameter in £?uXn", and V 

denotes the convolution operation. The stable operators H, U, and V are obtained using 

the well-known Youla parametrization ([3]). Problem (5.3) is an infinite dimensional 

non-convex optimization problem and for each fixed parameter vector p, problem (5.3) 

becomes an iy control design problem. 

The polynomial version of problem (5.3) is solved in [48], where the parameter 

vector p is assumed to enter into the system state-space in a polynomial manner. Here 

we consider the more general rational case. That is, each entry gi of the generalized 

plant is a rational function of p as defined in Equation (5.1). In the sequel, without 

loss of generality, we assume that H, U, and V are finitely supported. If U and V were 

rational matrices in A, doubly-coprime factorizations can be performed on U and V and 

the resulting right and left coprime factors of U and V can be readily incorporated into 

Q ([3]). This assumption on the finite supportedness of H is justified by the fact that 

H is an operator in the XUm space. 

In this case, finite dimensional lower and upper bound problems of u are given by: 

inf ll/V&lk 

s . t .  Ml  <7  n  (o.4) 
P < P < P  

$  =  H ( p ) - U ( p ) * Q * V ( p )  
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un := inf ||<]>||i 
*,Q,p  

s. t .  IIQUi <  7  

P <  P < P  

<J> = H(p)-U(p)*Q*V(p) 

Q ( k )  = 0 if k  >  n .  

Following the same argument as in [52], it can be shown that the non-convex opti­

mization problems un and vn monotonically converge to u from below and above as n 

goes to infinity. Clearly, they admit the form of problem (5.2). 

Ho IPC design problem 

The %2 IPC design problem is formulated as follows: 

v := inf 

s . t .  I IQHi  <  7  

P < P < P  

$  =  H ( p ) - U ( p ) * Q * V ( p )  

where we follow the exactly same notations and assumption as made in the definition 

of the IPC design problem. 

Two convergent sequences of lower and upper bounds of v are given by: 

^:= jnf IIP^IH 
•p.Q.P 

s . t .  I IQI I i  <  7  

P < P < P  

$  =  H ( p ) - U ( p ) * Q * V ( p )  



un := inf ||$||3 
*,Q,P 1 1  

s . t .  HQIIl  <7  

P < P < P  

$ = H ( p ) - U ( p ) * Q * V ( p )  

Q(k) = 0 if k > n. 

These non-convex optimization problems are finite dimensional and they admit the form 

of problem (5.2). 

Robust ii IPC design problem 

The Robust IPC design problem is formulated as: 

u:= inf \\L~l<t>L\\i 
f ,Q,L,P "  1  

s . t .  I IQI I i  <  7  

p < p <p (5-5) 

L e C  

0  =  H { p )  — U ( p ) * Q *  V ( p )  

where £ := {diag(ii,.... ini) | U > 0} and nx is a positive integer. Note that for 

each fixed scaling matrix L = diag{ii,..., ini), problem (5.5) is a standard ii IPC 

design problem. And for each fixed parameter vector p, (5.5) becomes the ii robust 

performance problem([52]). 

Following the similar argument as in [52], it can be shown that problem (5.5) is 

equivalent to an infinite dimensional optimization problem of the following form: 

v = inf \\L~l$L\\i 

subject to ||<31| < a 

$  =  H ( p ) - U ( p ) * Q * V ( p )  
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where £ and i are vectors in Hnx such that 0 < £ < Z. Two sequences of lower and 

upper bounds of v are given by: 

"n - inf ||£-l(P„»)^||, 
v ,Q,L,p  

s . t .  IIQIIl  <  a  

p < p < p , i < e < ~ t  

$  =  H ( p ) - U ( p ) * Q * V ( p )  

i/» := inf \\L-'R{Q,p)L\\v  
V,Q,L,p 

s . t .  HQHi  <  a  

P < P < P , l < £ < e  

$  =  H ( p ) - U ( p ) * Q * V ( p )  

Q { k )  = 0 if k  >  n .  

Using the same argument as in [52], it can be shown that finite dimensional opti­

m i z a t i o n  p r o b l e m s  u n  a n d  u n  m o n o t o n i c a l l y  c o n v e r g e  t o  u  f r o m  b e l o w  a n d  a b o v e  a s  n  

goes to infinity, and that they are also in the form of problem (5.2). 

In what follows, we shall demonstrate how to solve the finite dimensional non-convex 

optimization problem of the form (5.2). For the ease of exposition, we shall carry out 

the development based solely on the formulation given in (5.4) while the exact same 

technique applies the other cases that fall into the general setup defined in (5.2). 

As a concluding remark for this section, it should be mentioned that following the 

same framework developed here, the lL/%2 multiobjective IPC design problem can also 

be defined, where the objective function is composed as the nonnegative linear combi­

nation of Ei and Ho norms of the closed-loop system. And the corresponding convergent 

finite dimensional approximation problems can be formulated in a straightforward man­

ner and shown to admit the same form as problem (5.2). 
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In this section, we show that, by introducing several sets of auxiliary variables, the 

non-convex optimization problem to be solved can be reformulated as an optimizing 

problem with linear and non-linear constraints, where the non-linear constraints are of 

the type x = yz for variables x, y, and z. 

Verification of the stabilization and detectability assumptions 

Let the following be the state-space representations^!]) of stable operators H, U, 

and V in (5.4): 

Hss = 

Uss = 

V™ = 

A H Bh 

Cil  DH  

Atz Bu 

Cu Du ^ 

Ay By 

Cy Dy 

A + Bo F —BoF 

0 A + LC'i 

Cy + D\oF —D\oF 

B y 

By + LDoi 

Dn 

A 4- B2F —Bo 

C\ + DyoF i —Dyo 

A + LC2 1 B\ + LD21 

Co Doi 

where F and L denote the feedback and observer gains that stabilize the system for any 

given p E [p. p]. Note that if A(p) is assumed to be stable for any feasible parameter 

vector p, then the zero controller (F = 0, L = 0) are to be chosen in the above 

realizations. 

As discussed above, the gain matrices F and L vary as the parameter vector p 

changes. In what follows, we show that, given the stabilization and detectability as­

sumptions on (A(p), B2(p),C2(p)), there necessarily exist a finite number (say, M) of 

subsets [pr,pr] of 1Zm, and corresponding gain matrices Fr and Lr such that [p,p] C 

Ur=i[pr:Pr] and A(p) + Bo{p)Fr and A(p) 4- LrC2(p) are stable for all p € [pr,pr]. 
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In the sequel, denote pr = [pH ... p r m] and pr = [prl... p r r n] . For the given parameter 

vector p, a pair of feedback gain FL and observer gain ZL can be computed such that 

A(p) + J92(p)Fi and A(p) + LLC2(p) are stable. By solving a robust analysis problem 

with respect to the parameter p at the nominal point p (see [56]), we can obtain a 

positive constant cL such that A(p) + Bo(p)Fi and A(p) + L\Co{p) are guaranteed to 

be stable for any p e [p — cL,p + Ci] := {p 6 7?.m| p. — ct < pi < p£. -f cL, i = 1,..., m}. 

Let pL = p and pL = p + cL. If cL > ||p — p||oc, we are done. Otherwise, define 

p2 := {po; = plL and p2i = pl£, i = 2,..., m}. Following the same argument as above, 

we can find a pair of gain matrices Fo and L-i and a positive radius c2 such that 

A(p) + B2(p)and A(p) + L2C2(p) are stable for any p 6 [p.,, p0 + c2]. Let p2 = p0 + c2. 

Continue the above iteration and the compactness of the set [p, p] implies that, after a 

finite number (say, M) of steps, the set [p,p] will be covered by the union of all the sets 

[P r:Pr\-

Therefore, the problem un  defined in (5.4) can be restated as: 

"»:= ||P"<t|1' 

s - t .  HQHi  <  7  

P r < P < P r  

$  =  H ( p ) - U ( p ) * Q * V ( p ) .  

Without loss of generality, we can assume M = 1 and so the problem un would still 

admit the same formulation as defined in (5.4). 

Let 

Ph . . . »  Prm Pi, PlP2, ... ; Pi 1 • * - ? Pm 

be a basis for all the polynomi a ls of elements of p up to y-degree and let d be its 

dimension. Define 

n  =  [1  p i  . . .  pm pi P1P2 ... pi . . .  ptif = [^1V2 . . .  
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where %'s is a set of new variables to be used in the reformulation of the problem un. 

Each element 7% of FI is a dj-degree monomial of the form 
m m 

= n Pj" ' 0 - % - di- 53 = di < <P- (5.6) 
J = L  j = l  

Moreover, there exist indices ii 6 {1,2,...,d} (Z = 0,..., d£) and ji 6 {1,2, ...,m} 

(Z = 1,..., d,-) such that rji is equivalently characterized by the following set of equations: 

Vi — Via — ViiPji 

lid, -1 = VidiPjdi 

Via, = L 

For example, suppose m  = 2 and y? = 2. Then 

n = [1 pi p2 p! P1P2 pv]T = hi n-2 m n-1 %  ^ ] r -

Hence, r/2 can be characterized by 

Vz = t?i 1 Pi [ ï'O = 2,j'i = 1 ] 

Hi = 1 [ it = 1 ] 

and 774 can be expressed as 

' Pi [ to = 4, ji = 1 ] 

12 = 771 "Pi [ h = 2,j2 = 1 1 

T)i = 1 [i2 = l]. 

Other entries of II can be characterized in a similar way. 

Denote the denominator of gi by 

uJi := 

and so 
m 

1 = w; 
£ J=1 

m 
9 i  =  5 3  e f A .  ( I I  p J ' f c J  }  

fc j=i 

(5.7) 
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It follows that there exist constant coefficients and % such that 

d m 

i = ujt 52 uikr]k = uit 52 Uifcin Pjfcj} 
fc Jt=l j=L 

9i = W. 52 = Wj 52 P/' }' 
A: fc=l j = l 

New characterization of $ 

By the definition of the impulse response for discrete-time systems, we infer from 

the state-space representations of H, U, and V that any entry Hij(k) of the impulse 

response matrix sequence H is a polynomial function of the vector variable g, and so are 

Uij(k) and Vij(k). It is easy to see from the definition of un that only the parameters of 

<J>6c(A;), .... $bc(k),.... <&bc(k) are involved in the optimization of un. Moreover, based 

on the definition of the convolution operation, it is clear that <&bc(k) (k = 0,1,...,n) 

is a polynomial function of g\,...,gm (up to the degree of a constant, say, on) and 

Qst(0),...,Qst(k). 

Similar to the case of the parameter vector variable p, let 

1, 9i, 9fn, 9i, <7i<72, 9 ° i n ,  9 ° f h  

be a basis for the on-degree polynomials of g and let d be its dimension. Define 

r = [1 gi ... <7m g'l 9i92 -- - 9°n --- 9m\T = [n r2 ... rj]T. 

where r?s is a set of new variables to be used in the reformulation of the problem t/n. 

Then each element ri of T is a dj-degree monomial of the form 

m _ rn _ 

Ti = JJ g/1, 0 < dij < di, 52 % = di < on. (5.10) 
j=i j=i 

(5.8) 

(5.9) 
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Moreover, there exist indices ii G {1,2,... ,d} (I — 0,..., di) and ji G {1 ,2 , . . . ,  m}  

(I = 1,... ,di) such that r,- is equivalently characterized by the following set of equations: 

Ti = Ti0 = rhgh 

(5.11) 
Tid,-i = T%9jdi 

T.j, = L 

It follows that there exist constant coefficients fbcki and hbckisti such that <&bc(k) can 

be expressed as 

d  m  d  f l u  n u  k  m 

«*(*) = £ /«an s,"} + ££££ n sî" }<?>-(') 
t'=l j=L i=l s=L t=l 1=0 j=l (5.12) 

= y fbckjTj ^ ' hbckistl1~iQ$t (0 • 

Reformulation of problem un 

The problem of interest becomes 

un = inf 7 

s .  t .  <7 ,  i :  ÊiQi t i )+<37 , (0 ]  <  «  
fc=0 i=t z=o 

$6c(&) = 

(5.8), (5.9), (5.12) 

$k(&) > 0, $6"(fc) > o, Qf t(l) > 0 ,  Q7t(l) > 0 ,  p<p<p 

where the optimization variable set is taken as {"• / /EASI P-.  9^I ,^BC{K),^BC(K),^C(K),  

Qst(J-), Qft(0: Q7tU))? and we have used a standard change of variables from linear 

programming (see for instance [3]) to reformulate the variables and constraints of un. 

Specifically, the variable x is replaced by nonnegative variables x+ and x~ such that 

x = x+ — x~. Then the ii norm constraint ||Q||i < a is replaced by the constraint 

Zl=o[Qît(l) +Q7t(01 < ol, and ||P„$||i, the objective function to be minimized, is 
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replaced by introducing an auxiliary variable 7 such that 53fc=o[$6c(&) +^6cW]i 51 7-  It 

is also useful to mention that the optimal solution of the above programming problem 

always satisfies that either $^.(k) or is zero. 

To set the stage for the branch and bound algorithm, we suppose that the rectangle-

type set [p, p\ E is partitioned into M subsets [pr,pr\ (r = 1,..., M) such that 

[ap] = Ur=t[pr:Pr], where pr = [prl • - • PrJT and pr = [prl • • • prm]T € Rm. Then a 

finer grid version of problem un is defined as: 

i/n,r = inf 7 

s. t. + %(k)| < 7, E ÈlQTM) + <?:,(')] < a 
k=0 t=L 1=0 

^ 

(5.8), (5.9), (5.12) 

<c(/c) > 0, $£(*) > 0, Qf t(l) > 0, Q7T(l) > 0, p r  < p < ?. 

where the variable set is (7/eas, P , g ,  $ b c ( k ) , $ i c ( k ) , $ g ( k ) , Q s t ( l ) , Q f t { l ) ,  Q 7 t V ) ) -

For notacional convenience, we shall use the symbol <5 to denote the set of (7 ,  p, <!>(,c(k),  

< & £ c ( k ) , $ g { k ) , Q s t ( l ) ,  Q t t ( l ) , Q 7 t ( 1 ) )  6  1 l l V  ( N  =  1  +  m  +  Z n . n w ( n  +  1 )  + 3 n u n v ( n  +  l ) )  

such that all the linear constraints in problem (5.13) are satisfied. Thus problem vn,r is 

expressed as: 

un,r = inf 7 

s. t. (5.8), (5.9), (5.12) (5.14) 

(7 ,  P, «*(*) ,  %(&),<%(&),%<( ' ) ,  QÎM.Q7M) e *. 

To prepare for the linear relaxation scheme introduced in the next section, let us 

further introduce the following variables: 

is t l  •— TiQstiPl  
(o.lo) 

5ik '^i T]k 
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and it follows from (5.8), (5.9), and (5.12) that 

d 
1 — ^ ' uik$ik 

k=i 
(5.16) 

(5.17) 

^6c(^-)  — ^ '  fbckiTi "f" ^  ~ h-bckist l^ist l  
i  

(5.18) 

So problem (5.14) becomes 

untr := inf 7 

s. t. (5.7), (5.11), (5.15-5.18) 

(7,A$k(&), e 

(5.19) 

where the variable set is taken as (7 ,  p, n, g, X i s t l ,  5 i k ,  w., <bb c{k),$£c(k),<&7c(k).  Q s t{l),  

Qtt(l), Q7t{l))• Clearly problem (5.19) is a non-linear optimization problem and hard 

to solve in general. 

5.3 Problem Solution 

Following (5.7), (5.11), and (5.15), define 

\Jji := {(T£J , TTI+L, QJL+L ) E V?\ Inequalities in (4.13) are satisfied with 

Aiji  := {{Vii>  ̂ I'n-L: Pjt+i) G ft31 (4.13) are satisfied with 

' %+i ' Pii+i • ' 3i,+l ' 7 £j(+t ) ) 

A£ti := {(Afatt, n, Q5£(/)) E 7£3| (4.13) are satisfied with (X i s ti ,  n,  Q s t(l ) , T i ,  ri; a, -a)} 

Af/t := {(^i*,W;,%) E 7l3 |  (4.13) are satisfied with {5 i k ruj i :  aj£ ,  %, 77J} 

where r and r denote upper and lower bounds for the variable x and they can be a 

priori computed. 

(t{j, Xi, Xj, Ui, li, u.j, lj} replaced by (t^-, , , 9jl+l • "it+i ; —tt+i ~ 9ji+i • )} 
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Hence from (5.19) and Lemma 4.4.1, we have 

z/„ , r  := inf 7 

s. t. (T^ ? ril+l. ) E A{j]it, Vii+i i Pji+i ) E Aij7 

{Xistl• T~i, Qst{l)) G A2'S^, ((5;"FC, UF, 77FC) G AIFC 

(5.7), (5.11), (5.15-5.18) 

(7,P^6c(fc), <5+(A:),$b-(A:),Qst(Z), Q+t(Z),Q7t(0) € 

Removing the nonlinear constraints (5.7), (5.11), and (5.15), we have the following 

relaxed linear programming problem: 

^n, r  :=  inf  7  

S. t. (T,-,I ! 9JI+\) E A(?7I(5 HII+II Pji+i) E 

('V'STZ, TJ, QST(O) E A,S^, ((?T'FC, CVJ, 7/FC) E AIFC 

(5.16-5.18), (7,A$kW, 

It is clear that if the relaxed problem u^r is infeasible, then so is the problem vn,r. 

If u£r is a finite real number, then u£r < vn<r. Now we are ready to prove the main 

result of the paper. 

Theorem 5.3.1 Suppose an optimal solution of the relaxed problem uff r is given by: 

(7, Â Tu g, Vu 5,x-, uTi, ^bc{k).^c(k), $£(fc), Qst(l), Qtt(0> Q7i(0)-

Then there exists a feasible solution 

(7/«„„ p,g, *tc{k), «£(*), *;;(*)> çwo, QS('), Qîùl)) 

for problem un r (as defined in (5.13)) such that 

Un,r =7 < fn,r < 7/eas (5-20) 

7/e«w - 7 < Cdrt0c (5.21) 

where C is a finite positive constant and t/r>00 = max{|pri — p .| : 2 = 1,..., m}. 
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Proof: Following the definition of un^r in (5.13), we construct a candidate feasible solu­

tion of t/nir as follows: 

.pfkJ 

m m 
$bc{ k )  := 53 Actif II 9j i J}  + 53 hbckist i{n 9j i j  }Qst{l) [ from (5.12) ] 

i  j=I  j=l  

<Kc(k) '•= max{$6c(fc),0}, <&bC{k) := - min{$6c(fc), 0} 

Si  -  [ from (5.8) and (5.9) ] 

Ifeas := max{£ £[^k( f c)  + $bc(k)}}-
c=L k=Q 

Then it is clear that 

(7/eas, P,  9 , ̂ 6c(fc), $£(£), $àC(fc) > Qst (0. Q7t(01 Qst(0) 

is feasible for problem (5.13) and so (5.20) is established. 

To show (5.21), it is useful to observe that from the definition of the following 

linear constraints hold: 

(7^,-Ci'^i) 6 Aijh 6 A?, 

(A,sir, ^)Qst(O) E A*sti, (Sik,uTi,rik) 6 Affc 

1 _ v- r r (5.22) 
1 — / . . 9i — / - Vik^ik 

k=L fc=L 

^bc(k) — ^ 1 fbcki^i ^ , /&6cfcistZ Atst/. 
i i,s,t,Z 

Furthermore, from (5.6) and (5.7), we have FT/Li Pj 0 ' 1  — IlzLi Pj t  •  This, together with 
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(5.22) and Lemma 4.4.1, implies that there exist real constant CVi  and C'm such that 

m di 
W i - U p f " \  =  i % - n s i  

j—i /=i 

< IvTo — VhPjil + \Ph\\Vh — VhPhl "! H il PjiWvîIZi - PhiPjdi-li 
Z=1 

< (4)\Vh -  V h  I  \~Prj i  -  P r J l  I  +  (^) lp?i l  \Vi 2  -  n i 2  11Prh -  p r j 21 
^ di—2 

+ • • • + (4)1 II PilWPrh, - ~ 
1=1 

— <^r,oo 

hi  ~Hi\  ^  \Pn d i  -  p r j d i  11*(Pr j t  > p r j l  )  I <  c 'md r^ 

where <$>(•) is a (dt- — 1)-degree polynomial of prjJ and p . Similarly, from (5.8), (5.9), 

(5.22), and Lemma 4.4.1, we infer that there exist real constant CWi, Cai, and C'g. such 

that 
m m 

|i = 153 ui*s* - £î 53 ( II p~30kj} I 
k j=L fc fc J = 1 

m 
< 53 ~ +1^11%—(n Pj°kj m 

fc j=l 

< 53 l^|{(j)l^ — Sé* - HkI + |^|Crïfcrfr,oo} 
fc 4 

— CWi <^r,oo 

la-ail < Z«..(nyLis""} 

< Ç l^KlG - swsi + l^iK - Et tlft{njLi j I 
1 m 

+lEt".i{nr=1ft°"}"''i "3Sft "l} 
1 1 "i 1 

< 53 l%l{(%)l^ — y+illVk — Vk\ + \Vi\{-z)\Ui 53 "it(H Pj°kj } — + (~ô)Cvkd r.o 
fc 4 J fc J=1 ' 

— Cgidr< qo 

m m 
m®0"-lis/" 1 < cj,d, 
>=i J=i 
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Similar arguments as above show that for some constants c t i. c' t., and C>. i s t l  

in - n 3i'u i < in - n sf" i+m »*u - n s/" i < cT,*i00 
i=I i=I J=L J=I 

|Ti-r£[ < C;drt00 

m m 

IXstz —  { I X  9 j 9 , J } Q s t ( l )  I 5! IKst i  ~  TiQ s t ( l )  \  + |Qst(OII^' — H 9j°,J I 
j=I  J=L 

— + OtCTl(iTOO 

— C\lltldrca-

Thus it follows that for some constant c,t>bc(k), 

1^) + *ï£k)] - [*£(*:) + 

= llCWI - l^cWII 

< \<J>Uk)-$bc(k) \  
rn ______ m _____ 

< 52 l/bcfcill^t — {II 9j°'j }| + 53 l^6tibistz||AistZ ~ { H 9j°,] }Qst(l) I 
£ j'=l t',s,£,Z j = L 

— y. | /ticfci I CTi (/r,oo + 51 I hbckistl I Aij t( ^r.oo 
i i,s,t,l 

=: C^bc(k)dry00. 

Define 
nw n 

c :=max{5253crb=j-
c=L fc=0 

Then we have 

T/eas - 7 = tnax(52 ]0$6~c(fc) + ̂ c(fc)]> -
c=L fc=0 c=l fc=0 

< max{£ Y. ![«*) + *£(*)] - [<W + *5*)]l} 
c=l fc=0 

< Cdrt00, 

which completes the proof. B 

Having established the relationship between 7 and 7/eas. we can follow the exactly 

same procedure as discussed in Section 4.4 to compute a global optimal solution for 

problem u. 
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5.4 An Example 

Suppose that we are interested in designing a digital controller for a simple model of 

a mechanical system. The mathematical model of the plant is assumed to be a second 

order transfer function: 

P<S' " ms>L + k 
(5 M) 

where m, c, and k denote the mass, damping, and stiffness coefficients, respectively. We 

fix the parameters c and k such that c = 1 and k = 1, and we are supposed to have the 

freedom to ascertain the value for the mass of the system, which lies in a given interval 

[m, m] = [0.25,4.00], 

o 

Figure 5.2 Framework for Control Synthesis 

The closed-loop feedback control system design is expected to satisfy two objectives. 

The first is the performance goal: For the setup shown in Figure 5.2, the discrete-time 

controller shown stabilize the system so that the norm of the transfer function from 

the disturbance w, to the weighted output zL and the weighted control action z2, is as 

small as possible. The second goal incorporates the cost efficiency requirement. That 

is, since the cost of building the system increases as the mass decreases, smaller mass 

is penalized. 
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Given the design objectives, the optimization problem of interest can be formulated 

as follows: 

inf 
1 WsS 

WUKS 

s.t. K stabilizing 

m E [TIL, M] 

where d is a weighting coefficient, /(•) represents the cost function of the system with 

respect to the mass element, Ws is a low-pass filter: 

2.45242 + 2.4524 IVS = 

and 

z - 0.5095 

Wu = 1. 

inf 
1 

H 
m 

(5.24) 

Under the proposed framework, /(•) can be an arbitrary rational function of its 

variable. Here we choose d = 1 and /(•) = Hence the optimization problem of 

interest becomes: 
" WsS 

WJ<S 

s.t. K stabilizing 

m E [m, rn]. 

The A-domain model of the plant, P(A), is obtained by using the standard bilinear 

transformation from Equation (5.23) at a sampling frequency of fs = 5 Hz, which is 

5 times larger than all the possible system frequencies as the mass varies in the given 

interval [0.25,4.00]. The state-space realization of the discrete-time generalized plant 
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G (m) is given by: 

G (m) := 

0 

lOOm—9 
100m+Il 

200m—2 
I00m+LL 

l 
100771+11 

100771— 9 
( 100771+ll)2 + 200771-2 

100771+11 ^ (100771+11)'-

0 

0 

0.5095 

2.1524 _ 2.4524(100771-9) 
100771+11 (100771+11)'- 100771+11 ' (100771+11) 

4.9048 _|_ 2.4524(200771—2) 7019 

0 0 

1 100771 — 9 
100771+Il ( 100771+11)- + 200771-2 

100771+11 ' (100771+1 l)2 

0 

0 

0 

0 

1 

0 

1 

100771+11 

2.4524 

0 

1 

2.4524 
100771+11 

1 

l 
100771+Il 
(5.25) 

from which it can be seen that the entries of the generalized plant G depend on the 

system structure parameter m in a rational manner, and the denominators are uniformly 

bounded away from zero. Moreover, it can be concluded from Equation (5.23) that 

the plant is stable for all the possible mass values in the interval [0.25,4.00] and the 

generalized plant (5.25) is stabilizable by zero controller, whereby zero observer and 

feedback gains (F = 0, L = 0) are chosen in the simulation. It was determined that 

the finite dimensional approximation of tapping length n = 15 would yield a sufficiently 

good suboptimum to the infinite dimensional optimal cost and thus in the sequel, we 

shall present the results for solving problem (5.24) with n = 15. 

The optimization problem (5.24) was solved by combining the linear relaxation tech­

nique and the branch and bound algorithm (see details in [52]) on a P4 1.4G PC under 

Windows XP system and Matlab 6.1/Cplex 6.5 environment. With a tolerance of 

e = 0.01, the algorithm took 391 steps to reach the optimum and another 631 steps 

for verification. The total execution time was 4590 seconds. The optimum is achieved 

at ma = 1.22 and the corresponding lL performance and manufacturing cost are 7.65 

and 0.82, respectively. The associated stabilizing digital controller is of 6th order and 

is given by: 

-2.2879(1 - 1.819A + 0.8493A2)(1 - 1.819A + 0.8495A2)(1 + 1.85A + 0.8828A2) K = 
(H-0.3045A)(1 - 0.5105 A) (1 - 1.819A + 0.8492A2)(1 + 0.1708A + 0.09512A2) 
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The plot of the cost function of (5.24) versus the variable m is given in Figure 5.3, 

from which we can see that the optimum is achieved in the region of [1,1.5] and this 

coincides with the result obtained from the simulation. 

10.4 

10.2 

10 

9.8 

°> 9.6 

9.4 

9.2 

9 

8.8 

8.6 

8.4 
3.5 0.5 1.5 2.5 0 2 

The mass m 

Figure 5.3 Cost function of (5.24) versus the variable m 

Now we suppose we are also given the freedom to choose the spring constant fc, 

whose range of choice is given to be [fc, k] = [1,20] and an additional control design 

objective is to penalize larger k. To accommodate the requirements of the Shannon 

sampling theorem, the sampling frequency of fs = 10Hz is chosen and the possible 

range for the mass is restricted to be [m, m] = [1,1.4]. Here we consider the following 
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optimization problem of interest: 

inf 4 h 0.004fc 
m 

WsS i 
+ 

WUKS 

s.t. K stabilizing (5.26) 

m G [m, m] 

fc G [fc, fc]. 

The state-space realization of the discrete-time generalized plant G(m, fc) is given 

bv: 

G(m, fc) := 
Ac(m, fc) 

CG(m, fc) 

Bc(m, fc) 

Dc(m, fc) 
(5.27) 

with 

Ac(m, fc) = 400m-t-fc—20 
' -tOOm+fc+20 

800m-2/L-
•t00m+fc+20 

4Q0m+fc—20 
400m+fc+20 (400m+A:+20)2 400m+fc+20 (400m+fc+20)2 

800m—2fc 0.5095 

Bc{m, fc) = 

0 

0 

0 

1 

L 

Cc(m,fc) = 

2.4524 2.4524(400m+fc—20) 
400m+fc+20 

0 

I 
400m+fc+20 

(400m+Jfc+20)2 

400m+fc—20 
(400m+fc+20)2 

2.4524 

•I00m+fc+20 

4.9048 
400m+A:+20 + 

2.4524(800m-2A.-) 
(400m+fc+20)2 

0 

DG{m, fc) 0 

1 

400m+fc+20 

2.4524 
400m-t-fc+20 

1 

L 

800m—2fc 
(400m+fc+20)2 

3.7019 

0 

0 

400m.+fc-h2Q 

from which it can be seen that the entries of the generalized plant G depend on the 

system structure parameters m and fc in a rational manner, and the denominators 
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are uniformly bounded away from zero. Moreover, it can be seen that the plant is 

stable for all the possible parameter pairs in the rectangle [1,1.4] x [1,20] and the 

generalized plant (5.27) is stabilizable by zero controller, whereby zero observer and 

feedback gains (F = 0, L = 0) are chosen in the simulation. It was determined that 

the finite dimensional approximation of tapping length n = 15 is good enough and in 

the sequel, we shall present the results for solving problem (5.26) with n — 15. 

With a tolerance of e = 0.01, the algorithm took 14335 steps to reach the optimum. 

The total execution time was eight hours and three minutes. The optimum is achieved 

at m0 = 1.325 and k0 = 15.992. The corresponding lL performance, manufacturing 

cost and spring cost are 8.669, 0.755, and 0.064, respectively. The associated stabilizing 

digital controller is of 10th order and is given by: 

-3.6237(1 - 1.816A + 0.9293A2)(1 + 1.816 A + 0.9294A2) 
V (1 - 0.5066A)(1 + 0.2068A) (1 + 0.6217A + 0.1964A2) 

(1 - 1.816A + 0.9293A2)(1 - (7.743 x 10"5)A + 0.577A2) 
(1 - 1.816A + 0.9293A2)(1 - 0.3463A + 0.1669A2) 

5.5 Summary 

We have presented a global optimal solution to the simultaneous parameter and 

robust control synthesis problem in the paper. The structure parameters are assumed 

to enter into the system dynamics in a general rational manner and the structured 

uncertainty under consideration admits a bounded to induced norm. Global 

suboptimal solutions are obtained by solving linear programming problems for which 

powerful numerical softwares exist. 
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PART III 

CONCLUSIONS AND DIRECTIONS 
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In this part, we briefly summarize our main contributions, and outline some possible 

directions of future research. 

Summary 

In Chapter 1 and 2, a general multiobjective (GMO) control design framework in­

volving several important performance measures was formulated. Based on results from 

functional analysis and linear algebra, we showed that the problem resulting after im­

posing a regularizing condition always admits an optimal solution. Suboptimal solutions 

with performance arbitrarily close to the optimal cost can be obtained by construct­

ing two sequences of finite dimensional convex optimization problems whose objective 

values converge to the optimum from below and above. 

In Chapter 3, we showed that the finite dimensional upper and lower bound optimiza­

tion problems formulated in Chapter 2 can be formulated as LMI optimization problems 

and solved using semidefinite programming techniques. We introduced a multiobjective 

control design matlab package, GMO 1.0, which was developed by the authors to im­

plement the GMO algorithms. Using this package, we successfully computed solutions 

to several control design problems that have diverse performance requirements, which 

illustrated the effectiveness of the proposed theory and the software. 

In Chapter 4, based on a linear relaxation technique, we developed a global optimal 

solution to the integrated parameter and control (ISC) design problem, where the sys­

tem structural parameters are assumed to enter into the system dynamics in a general 

polynomial manner. Before this work, no known result is available on how to compute 

a global optimal solution for the ISC problem, even for the simplified case that system 

dynamics depend on structural parameters in an affine manner. Another advantage 

of the proposed algorithm is that it only requires the solution of linear/quadratic pro­
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gramming optimizations for which powerful and efficient numerical tools are available. 

In Chapter 5, following the similar idea as in the polynomial case, we presented 

a global optimal solution to ISC design problem where the structural parameters are 

assumed to enter into the system dynamics in a rational manner. The ISC problem 

setup considered is rather general, which, for example, includes as a special case the 

robust ii ISC problem. The effectiveness of the proposed algorithms in Chapter 4 and 

5 was illustrated via two numerical examples whose solutions were obtained by solving 

linear programming optimization problems. 

As a summary, the main contributions of the thesis are highlighted (compared with 

the current approaches to GMO and ISC problems as surveyed in Section 1.3 and 4.1): 

e (GMO PART) For the first time, a methodology is developed to solve the general 

multiobjective control synthesis problem involving £L norm, Ho norm, Hoo norm, 

time response constraints, and controller structural constraints, which furnishes 

the designers with a design framework, while all other current available approaches 

can only address a subset (two or three) of the objectives listed above. Moreover: 

— for the £]_ optimization with infinite horizonal TDC case, the GMO approach 

developed here is less conservative than the solution proposed in [5] in the 

sense that it does not assume the existence of an FIR feasible solution while 

the latter one does. 

— the GMO approach not only provides a much simpler solution to the ^/"Hoo 

problem, compared with the solution in [19], but also presents a solution for 

the Hoo/^ problem, for which no other known solution exists. 

— global optimal solutions are furnished for the well-known active suspension 

multiobjective ti/HifHoa control design for transportation vehicles, while 

other known methods (e.g. [41]) can only yield local optimal solutions. 
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— a Matlab-based software package, GMO vl.O, has been developed by the 

author to implement the proposed GMO methodology and this provides a 

tool for system designers. 

• (ISC PART) For the first time, a global optimal solution is proposed for the 

integrated structure and control design problem, while all other known methods 

can only yield (at most) local optimal solution. Moreover, 

— the parameter dependence considered here is the general rational case, while 

all other known methods can only deal with the case of linear (affine) cases. 

— the proposed ISC design framework enables the designers to achieve the best 

possible system performance with respect to all the stabilizing controllers, 

all the possible system parameters, and any given induced norm bounded 

structured uncertainty block. Currently no other approaches can compute a 

global optimal solution for such types of problems, even for the simpler case 

when the system depends on the structural parameters affinely. 

Future Research 

As a future research direction, it would be interesting to explore the possibility 

of incorporating into the GMO setup some controller order constraints, since in many 

engineering applications designers are interested in achieving the best optimal controller 

that admits an order of less or equal to a fixed number given a priori. As a closely related 

open problem, it is also intriguing to examine how to reduce the order of a given system 

with loc induced norm as the reduction criterion. 

To design a (sub) optimal closed-loop system that admits performance within a given 

tolerance e to the global optimum, the current practice is to compute both upper and 
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lower bounds for an increasing sequence of tapping length of the optimization variable, 

the Youla parameter Q, until the difference between the upper and lower bound is less 

than e. Depending on the nature of the given system, it might be computational ex­

pensive to achieve the desired performance. Hence it would be very attractive if the 

correspondence between the tapping length and the desired tolerance e can be estab­

lished. Moreover, to reduce the computation cost of the LMI optimization associated 

with the GMO setup when Hoo objective/constraint is involved, it would be interesting 

to examine the effect of using alternative LMI formulation for Woo specification. In this 

direction, the result presented in [16] might prove useful. 



103 

APPENDIX GMO 1.0 USER MANUAL 

Please refer to Chapter 1 — 3 for the theoretical background on which the GMO 1.0 

package is based on. Here we present a simplified version of the user manual for the 

multiobjective control design package, GMO 1.0. 

A calling synopsis of the main function (GMO.m) of GMO 1.0 package is summa­

rized in Table A.l. In what follows, via a simple example plant, we show how to set up 

the three parameters nwuec, nzvec, and coeff, for a given generalized plant to solve 

various robust control design problems of interest. For the setup of other parameters, 

please refer to Table A.l at the end of this Appendix and the template file GMOex-

ample.m in the root directory of the GMO package. A good way to read through and 

understand this section is to follow the illustration of this section with the template file 

GMOexample.m given in the root directory of the GMO package. 

vv:= < 

w'i 
w2 

*3 
w4 

w5 

*6 

-t 

-3 
-4 

-5 
:6 J 

> =: -

Figure A.l Closed-loop system 
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Define two transfer matrices R l  and R2 (Figure A.l) as follows: 

R l  : 

Wi 

ZI 
W-i 

-> Zo 
Wz 

Z3 
W4 

R2 : 
w5 

w6 

Zô 

ze 

We now show how to setup the parameters nwvec, nzvec, and coeff in Matlab to 

solve robust control design problems involving the optimization of Ho and II perfor­

mance for Rl and R2. We will also show how to incorporate time-domain constraint 

(TDC) into the control synthesis setup. 

%2 optimization 

Suppose one is interested in minimizing the Ho norm performance for the transfer 

matrix Rl, that is, to minimize 

\ \R l \ \ k  = 

7iz 
As shown in GMOexarnple.m, the following setup in matlab would correspond to 

the above minimization objective function: 

1 4: 

Wi • 

Zi 
Wo 

—> z2 
w3 

Zz 
W4 

nwvec = 

nzvec = 

coef f  = 

1 3: 

1 1 2; 
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and the configurations for the three parameters are given in the Figure A.2. 

mvvec =[ 1 4; ]; 4 Input information for/?1 

Index of the last input signal 

Index of the first input signal 

nzvec =[ 1 3; ]: < Output information for/?1 

Index of the last output signal 

Index of the first output signal 

coeff = [ 1 I 2; 1; 4 Coefficient and type information 

î î Î I H2 performance will be minimized 

This is a performance objective, 

not a performance constraint 

Weighting coefficient 

Figure A.2 Parameter setup for Rl 

l\ optimization 

Suppose one is interested to minimize the following linear combination of Ho and £i 

objectives: 

| | # l k = 0 . 5 *  
W5 

UJ6 

• 

Z5 

;
 J?

 

Then the following setup in matlab would correspond to the above objective func­

tion: 

5 6: nwvec = 

nzvec = 

coef f  = 

4 6; 

0.5 1 1; 
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nwvec = [ 5  6 ;  ] ;  

L 
nzvec = [ 4  6 ;  ] ;  

t 

coeff =[0.5  1 I :  ] ;  

î î L 

— Input information 

Index of the last input signal 

Index of the first input signal 

— Output information 

Index of the last output signal 

Index of the first output signal 

— Coefficient and type information 

/[ performance will be minimized 

This is a performance objective, 

not a performance constraint 

Weighting coefficient 

Figure A.3 Parameter setup for R2 

and the configurations for the three parameters are given in the Figure A.3: 

%2 + li multiobjective optimization 

Suppose one is interested to minimize the following objective function: 

11^11^+0.5*11*%: = 

- 2 
Wi - • 

~t -4 
Wi 

-f- 0.5 * 
W5 

—» -f- 0.5 * —> •^5 
w3 w6 

=3 
U/4 

«2 «2 

Then the following setup in matlab would correspond to the above objective func-
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tion: 
f 1 4; 

5 6; 

1 3: 

4 6: 

1 1 2; 

0.5 1 1; 

and the configurations for the three parameters are given in the Figure A 4: 

nwvec 

nzvec = 

coef f  = 

t i / T D C  multiobjective optimization 

Suppose one is interested to minimize the following objective function: 

\ \ & \ k  = 

such that the map R3 : wi —> zL satisfies the step response constraint templates atemp 

and btemp: 

atemp(k) < R3{k) < btemp(k),Vk > 0. 

Then the following setup in matlab would correspond to the above objective function 

(Figure A.5): 

- ~4 
W5 

—> ^5 
W6 

?6 

nwvec — 

nzvec = 

coef f  — 

5 6 

1 1 

4 6 

1 1 

0.5 0 1: 

1 1 5 :  
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nwvec = [ 1 4; 
5 6; ]; 

Index of the first input signal for the first channel 

Index of the last input signal for the first channel 

— Input information for the first channel 

Input information for the second channel 

Index of the last input signal for the second channel 

Index of the first input signal for the second channel 

nzvec = [ 1 
4 

3; 
6; ]: 

î t 

Index of the first output signal for the first channel 

Index of the last output signal for the first cannel 

Output information for the first channel 

—Output information for the second channel 

Index of the last output signal for the second channel 

Index of the first output signal for the second channel 

cceff = [ I 
0.5 

r 
l: I: 

t 

Weighting coefficient 

This is a performance objective, 

not a performance constraint 

H2 performance will be minimized 

Weighting & type for the first channel 

—— Weighting & type for the second channel 

/[ performance will be minimized 

This is a performance objective, 

not a performance constraint 

Weighting coefficient 

Figure A.4 ||-Rl||«2 +0.5 * ||Â2||£L optimization 
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I r 
nwvec =[ 5 

1 
6; 
1: I; 

Index of the first input signal for the first channel 

Index of the last input signal for the first channel 

—— Input information for the first channel 

—— Input information for the TDC channel 

Index of the last input signal for the TDC channel 

Index of the first input signal for the TDC channel 

1 f 
nzvec = [ 4 

1 
6; 
I: 1; 

î 1 

Index of the first output signal for the first channel 

Index of the last output signal for the first cannel 

Output information for the first channel 

Output information for the TDC channel 

Index of the last output signal for the TDC channel 

Index of the first output signal for the TDC channel 

coeff = [ 0 J 
1 

f 
I; 
5; 

t 

Weighting coefficient 

This is a performance objective, 

not a performance constraint 

Z| performance will be minimized 

— Weighting & type for the first channel 

— Weighting & type for the TDC channel 

TDC is imposed on this channel 

This is a performance constraint, 

not an optimization object 

A dummy parameter for TDC case 

Figure A.5 0.5 * optimization 
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function [Ksys,Rsys,Qsys,obj,Rnorm,Q,bounds] = GMO(Gsys,nz,nw,nzvec,nwvec, 
nu.ny,coeff, Qcoeff,tol,tol2,Ts,lenqind,lbflag1 ,lbflag2, 

LMIsolver.PPmethod.beta.atemp.btemp.ctemp.dtemp) 
Output variables 

Ksys discrete-time controller 

Rsys discrete-time closed-loop system 
Qsys Youla parameter 

obj Objective function value 

Rnorm closed-loop system norm 

0 Impulse response of the Youla parameter Q 

bounds Lower and upper bounds with respect to lenq 

Input variables 

Gsys discrete-time generalized plant 

nz column vector of the dimension of input channels 

nw column vector of the dimension of output channels 
nzvec l-by-2 matrix containing the dimension information of the I output channels, where 

l=dim(nzvec(:,i))=dim(nwvec(:,i)), 
nzvec(i,1:2)=[(starting output channel index) (starting input channel index)]; 

nwvec l-by-2 matrix containing the dimension information of the I input channels, where 
l=dim(nzvec(:,i))=dim(nwvec(:,i)), 
nwvec(i,1:2)=[(starting output channel index) (starting input channel index)]; 

nu number of controller outputs 

ny number of controller inputs 

coeff coefficent matrix with the structure: coeff=[coeff(1 )'... coeff(l)T, where 
coeff(i)=[ci obj/con type) 
ci: ith channel performance weighting ci 
obj/con: 1-Objective O-Constraint 
type: 1-11 2-H2A2 3--H2 4~Hinf 5-SRC 6-IRC 

Qcoeff nu-by-ny coefficent matrix, whose nonzero elements indicate the zero elements of the 
Youla paramter matrix Q 

toi relative difference tolerance between final objective values 

tol2 FIR approximation tolerance 

Ts sampling period 

lenqind length of Q variable 

Ibf lag 1 1 -lenq=lenu+lenv-2 (faster convergence) 0-lenq=lenqind 

IbflagS 1 -compute the lower bound 0-omit the computation of lower bound 

LMIsolver LMI solution via: 1-spcode 2-sdp code 3-sdpha code 
4-Cplex(no Hinf obj/cons;no H22/H2 cons;no H2 obj) 
5~LP/QP(no Hinf obj/cons;no H22/H2 cons;no H2 obj) 

LP-linprog.m, QP-quadprog.m in Matlab optim toolbox 

PPmethod Pole placement via: 1 -linear quadratic method 2-matlab pface(.) function 

beta one norm bound on Q 

atemp lower template matrix for SRC constraint 

btemp upper template matrix for SRC constraint 

ctemp lower template matrix for IRC constraint 
dtemp upper template matrix for IRC constraint 

Table A.l Calling Syntax of GMO(.) function 
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