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Network reconstruction of dynamical polytrees with unobserved nodes

Donatello Materassi

Abstract— The paper deals with the problem of unveiling
the link structure of a network of linear dynamical systems. A
technique is provided guaranteeing an exact detection of the
links of a network of dynamical systems with no undirected
cycles (Linear Dynamic Polytrees). In particular, the presence
of unobserved (latent) nodes is taken into account. Knowledge
on the specific number of hidden processes is not required. It
is proven that the topology can be consistently reconstructed,
as long the degree of each latent node is at least three with
outdegree of at least two. The result extends previous work
that was limited to a more restricted class of dynamical systems
(Rooted Trees).

I. INTRODUCTION

In many diverse areas, determining cause-effect relation-
ships among various entities in a network is of significant
interest. Interconnections of simple systems are used to
understand the emergence of complicated phenomena (see,
for example, [1]) and have provided novel modeling ap-
proaches in many fields, such as Economics (see e.g. [2]),
Biology (see e.g. [3]), Cognitive Sciences (see e.g. [4]),
Ecology (see e.g. [S]) and Geology (see e.g. [6]), especially
when the investigated phenomena are characterized by spatial
distributions where a multivariate analysis is involved.

Given the widespread interest in unraveling the intercon-
nectedness of complex networks, the necessity for general
tools is rapidly increasing (see [7] and [8] and the bibliog-
raphy therein for recent results). Indeed, even though there
is considerable work in this area (see [7], [8], [9], [10]),
deriving information about a network topology remains a
formidable task with many theoretical and practical chal-
lenges [11].

Most present techniques offer methods to identify a net-
work structure based on heuristic considerations, where theo-
retical guarantees about the correctness of the reconstruction
are usually not provided. For example, in [7] different tech-
niques for quantifying and evaluating the modular structure
of a network are compared and a new one is proposed trying
to combine both the topological and dynamic information of
the complex system. However, the network topology is only
qualitatively estimated.

In this paper we address the problem of reconstruct-
ing a network of dynamical systems using only passive
observations. One of the most difficult challeges in the
reconstruction of a network of dynamical systems is given
by the intractability presented by cycles. This is the reason
why most techniques focus on identifying acyclic structures
(see for example [12], [3], [2], [13]). However, even though
an acyclic topology may seem quite a reductive choice,
given an intricate and connected link structure, one may be
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interested in “approximating” it with a tree scheme. Such an
approximation could be considered “satisfactory” if the most
important connections were captured.

For example, tree topologies have been successfully em-
ployed in [3] for the study of gene regulatory networks
even though the underlying structure is considerably more
complicated.

Another such an application is in the identification of a
tree network in a complex scenario is developed in [2] for
the analysis of a stock portfolio. The authors identify a tree
structure according to the following procedure: i) a metric
based on the correlation index is defined among the nodes; ii)
such a metric is employed to extract the Minimum Spanning
Tree [14] which yields the reconstructed topology. In [15]
limitations of these strategies are highlighted, where it is
shown that, even though the actual network is a tree, the
presence of dynamical connections or delays can lead to the
identification of a wrong topology. In [13] a similar strategy,
where the correlation metric is replaced by a metric based
on the coherence function, is numerically shown to provide
an exact reconstruction for rooted tree topologies.

One important issue in the identification of structures of
dynamical systems is given by the processes that can be
observed. Indeed, in many scenarios it is not possible to
obtain measurements from all the processes involved in a
complex system and part of the variables can be latent. This
scenario, in the case of a structure of random variables has
been investigated in [16] and, more recently, in [17] in the
case of rooted trees.

In particular the results in [17] provide a foundational basis
for this article. In this paper we extend theoretical guarantees
that were provided in [17] for rooted tree networks of random
variables. We show that a modified version of coherence
metric used in [13] provides an exact reconstruction of
polytrees of dynamical systems. Thus, the main contribution
of the paper is in the synthesis of the results of [13] and
[17].

The paper is organized as follows. In Section II we
provide the preliminary definitions; in Section III we give a
formal description of the problem; in Section IV we provide
the preliminary notions necessary for the development of
the main result in Section V, namely an algorithm for
the reconstruction of polytrees of dynamical systems; in
Section VI we illustrate how such an algorithm works using
simple examples.

NOTATION

o E[]: expectation operator

o Z{-}: z-transform operator

o &,y (2): cross power spectral density of two jointly
stationary stochastic vectors

Cay(2) = Z{E[z(0)y" (7)]}
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o D,(2) :=Duu(2)

0~ (z) : the indegree of a node z in a graph
o 01 (z) : the outdegree of a node x in a graph

d(z) =6 (x) + 6" (z) : the degree of a node z in a
graph

II. PRELIMINARY DEFINITIONS AND NOTIONS

The following three definitions are functional to the de-
velopment of theoretical results.

Definition 1: Let £ be a set containing time-discrete
scalar, zero-mean, jointly wide-sense stationary random pro-
cesses such that, for any e;,e; € &, the power spectral
density ®.,.,(2) exists, is real rational with no poles on the
unit circle and given by

A(z)

(I)eiej (Z) = Wv

where A(z) and B(z) are polynomials with real coefficients
such that B(z) # 0 for any z € C, with |z| = 1. Then, £ is
a set of rationally related random processes.

Definition 2: The set F is defined as the set of real-
rational single-input single-output (SISO) transfer functions
that are analytic on the unit circle {z € C| |z| =1}.

Definition 3: Let £ be a set of rationally related random
processes. The set F& is defined as

FE .= {gg = ZHk(z)ek | ex € E,Hp(z) € F,m € N}.
k=1

The following definition provides a class of models
for a network of dynamical systems. It is assumed that the
dynamics of each agent (node) in the network is represented
by a scalar random process {x; }}’:1 that is given by the
superposition of a noise component e; and the “influences”
of other “parent nodes” through dynamic links. The noise
acting on each node is assumed to be unrelated to other
noise components. If a certain agent “influences” another
one a directed edge can be drawn and a directed graph can
be obtained.
Definition 4 (Linear Dynamic Graph): A Linear
Dynamic Graph G is defined as a pair (H(z), e) where
e ¢ = (e1,..,e,)T is a vector of n rationally related
random processes such that ®.(z) is diagonal
e H(z) is a n x n matrix of transfer functions in F such
that Hj;(z) =0, for j =1,...,n.
The “node processes” {x;}7_; of the LDG are the processes
defined as

n
zj=ej+ ) Hji(2)z,
i=1
or in a more compact way

xz(t) = e(t) + H(z)x(t). (1)

Let V := {z1,...,2,} and let A := {(z;,x;)|H;;(z) # 0}.
The pair G = (V, A) is the associated directed graph of
the LDG. Nodes and edges of a LDG will mean nodes and
edges of the graph associated with the LDG. Also, we say

that a LDG is topologically identifiable if ®.(e') is positive
definite for every w.

A LDG is an interconnection of stochastic processes via
linear transfer functions Hj;(z) according to a graph G and
forced by stationary additive mutually uncorrelated noise.

The generative class of models: Linear Dynamic Polytrees

In this paper we will consider only acyclic structures.
Consistent estimators for the structure of a LDG will be
provided assuming that data are generated according to an
interconnection of dynamical systems that has no loops
(disregarding the orientation of the edges).

Definition 5 (Polytrees and rooted trees): A polytree is a
directed graph where each pair of nodes is connected by
a unique undirected path. Each node of a polytree with
indegree equal to zero is a “root”. A rooted tree is a polytree
with exactly one root.

From the definition of LDG, we obtain the following
definitions for acyclic dynamic graphs.

Definition 6 (Linear Dynamic Trees): The LDG
(H(z),e) is a Linear Cascade Model Tree (LCMT) if
the associated graph is a rooted tree (see [13]). The LDG
(H(z),e) is a Linear Dynamic Polytree (LDP) if the
associated graph is a polytree.

For any root in a LDP it is possible to define an associated
LCMT.

Definition 7 (Subtrees of LCMT): Given a LDP, the
LCMT given by a root and all its “descendants” is a subtree
of the LDP.

A graphical representation of a polytree with three roots and
the associated subtrees is given in Figure 1. We also provide

Fig. 1. A polytree and the subtrees associated with its roots.
the definition of a latent LDG, namely a LDG where only a
subset of its nodes can be observed.

Definition 8: A latent LDG (or LCMT, LDP) is a LDG

(or LCMT, LDP) where the set of nodes, V/, is partitioned
in two sets O and H. The nodes in the set O are called
“observable nodes” while the nodes in the set H are called
“hidden nodes”.
The sufficient and necessary conditions under which a latent
undirected tree (of Gaussian random variables) can be suc-
cessfully reconstructed only by knowing the statistics of the
“observable nodes” are given in [16]. These “minimality”
conditions amount to

1) no pair of random variables is perfectly correlated or

uncorrelated (that is (p — 1)p # 0, where p is the
correlation coefficient of the two random variables)
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2) each hidden variable, as represented in the graphical
model, has at least degree 3.
Following [16], we extend the definition of minimality to
LDPs (in our case the graph is directed and consists of
stochastic processes).

Definition 9 (Minimal Linear Dynamic Polytrees): A la-
tent LDP is minimal if the following three conditions are
met

« the LDP is topologically identifiable

« each hidden node has degree greater than or equal to 3

o each hidden node has outdegree greater than or equal

to 2
Finally we provide the definition of terminal node.

Definition 10 (Terminal node): Given a polytree (or a
rooted tree), we say that its node x is terminal if its degree
is exactly one, that is 6(x) = 1.

III. PROBLEM FORMULATION

Consider a minimal latent LDP with n nodes {x;}7_,. Let
{x; }?;1 be the n,, observed processes, with n, < n. Assume
no information about the presence or absence of hidden
nodes. Only the (cross)-spectral densities of the observed
processes P, (€™), with i,j = 1,...,n,, are known.
Determine the structure of the graph associated with the LDP.

IV. PRELIMINARY RESULTS

We start introducing a metric on the nodes of a LDP in
the following way.

Definition 11 (Log-Coherence Distance): We define the
log-coherence distance as

| @i (e™)?
fe2) = = [os (s ) @
Observe that, if a LDP is topologically 1d7ent1ﬁable the log-
coherence distance between two nodes is always strictly pos-
itive. The following proposition provides a test to determine
if two nodes belong to a common subtree.

Proposition 12: Consider two nodes z; and x; in a LDP.
They belong to a common subtree if and only if I(x;,z;) <
+o0.

Proof: The proof is straightforward and left to the
reader. [ ]
The following proposition states that the log-coherence dis-
tance is additive along a path of a LDP if it remains in the
same subtree.

Proposition 13: Consider two nodes z;, and x;, in the
same subtree of a Linear Dynamic Polytree, and let P =
{(ziy, i), ... x(,_,,2;,)} be the unique (undirected) path
linking them. The log-coherence distance is additive on the
path, that is

j{:.l (Ti;_y, i) (3)

Proof: The proof of thls statement is left to the reader.
An analogous proof with a metric based on the correlation
index for graphical models of random variables can be found
in [16].

'T’L()7 xzp

|
The following lemma allows one to test if a pair of nodes
is connected through a direct link with one of the two nodes

ey ©))

Fig. 2. Graphical representation of the configurations for two nodes x;
and z; that are detected by the “one-hop terminal test”

being also a terminal node for all the subtrees the pair
belongs to.

Lemma 14 (One-hop terminal test): In an identifiable
LDP, consider three observable nodes z;, x;, x} and define

Iz, xp) — Iz, xp) 4

for every xy, such that I(x;, zx)I(z;, %) < +oo. It follows
that

\Ill’il’jxk =

Voiaja), = I(z;,25) )

for every xj such that I(z;,xx)I(z;,x,) < +oo, if and
only if x; and x; are connected and one of the following
conditions is met

1) 6" (z;)=0or

2) 0T (z;)=1,6(x;)=0

Proof: See the Appendix. [ ]
The possible scenarios described by Lemma 14 are depicted
in Figure 2.

The following lemma provides a test to check if two nodes,
that are both terminal, in one rooted subtree are directly
connected to the same hidden node.

Lemma 15 (Two-hop terminal test): In an identifiable
LDP, consider three observable nodes x;, x;, x3 and define

Iz, x,) — Iz, xk) (6)

for every xy, such that I(x;, zx)I(z;, %) < +oo. It follows
that

\I/mixjmk =

|‘I’wiwﬂk |

for all k such that I(x;, zx)I(z;, k) # oo, if and only if the
path between z; and x; has length 2, z; and x; are separated
by a hidden node and one of the following conditions is met

1) (er(ZL'Z) =1, 57(1'1) =0, 5+(£L'j) =0

2) (5+($]‘) = ]., (S_(.’Ej) = 0, (5+((E1) =0

3) 5+(.’El> = 5+(£Ej) =0

=C< |I(.’Ei,$j)| 7

Proof: See the Appendix. [ ]
The possible scenarios described by Lemma 15 are depicted
in Figure 3.

The two-hop terminal test is a useful tool to detect hidden
nodes that are connected to terminal nodes: if the test is
positive on a pair of observed nodes, then there must a
hidden node connected to them. Thus, the hidden node
detected in this way can be added to the graph. In certain
situations, though, the introduction in the graph of hidden
nodes detected using the two-hop terminal test could lead to
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Fig. 3. Graphical representation of the configurations for two nodes x;
and x; that are detected by the “two-hop terminal test”

TN

Fig. 4. (a) A polytree with the a hidden root and three observable children.
(b) The application of the two-hop terminal test leads to the detection of
a hidden node separating each pair of observable nodes. Since the addition
of the hidden nodes and the relative edges creates a loop, it is possible to
conclude that all the detected hidden nodes are actually the same.

the creation of loops in the reconstructed graph. A scenario
like this is depicted in Figure 4. In the connection of
Figure 4(a), the two-hop terminal test is positive on every
pair of observed nodes. As a result, three hidden nodes
are detected, even though only one is actually present. As
the following lemma illustrates, if the introduction of the
detected hidden nodes creates a cycle, then all the hidden
nodes involved in the same cycle are the same hidden node.

Lemma 16: Consider an identifiable and minimal LDP.
The two-hop terminal test is positive for the pairs of terminal
nodes (z1,22), (x2,23),... (Tn-1,Zn), (Tn,x1) if and only
if there is a unique hidden node connected to x1, Za,..., Tp.

Proof: Only the necessity of the lemma needs to
be proven since the sufficiency follows from the two-hop
terminal test. By contradiction, consider that the node is not
unique. Then, there would be a a cycle in the polytree. M

Finally, we introduce a result that allows to compute the
distance of a detected hidden node from the other nodes of
the network.

Proposition 17: Let x; be a hidden node of a LDP
connected to two terminal nodes x; and x;. Let x;, be a node
of the network for which the distances I(z;, z)) < +o0o and
I(zj,x,) < 400 are known. The distance between x;, and
xp, is given by

Haxp, xr) = [I(z), o6 + Iz, xp) — Iz, 2:)] /2. (8)

Proof: From the two-hop test and the additivity of the
metric, we have that

I(Ihazi) 7[(12}“.%]') = \Ijxmcjack 9
I(zh, ;) + I(xh, xj) = I(z;, 2;) (10)
Thus, we have

Hzp, z;) = Iz, 2;) + I(zg, x:) — I(zg, 25]/2. (11

Since the distance is additive, we have that
I(xp, xr) = (s, o) — (2, ;) (12)

= I(xj, xp) — [[(xj,25) + I(wg, x5) — L(ag, 2;]/2.

(13)

|
The importance of this proposition is in the fact that once a
hidden node is detected using the two-hop test, its distance
from all the other detected nodes of the network can be
computed using other known distances.

V. GENERALIZED RECURSIVE REGROUPING ALGORITHM
FOR POLYTREES

In [17] an algorithm for the reconstruction of rooted trees
is described. Such an algorithm (Recursive Regrouping Algo-
rithm) consistently reconstructs minimal rooted trees (indeed
it is defined for graphical model of random variables). The
algorithm that is now proposed is a generalization of [17]
to the case of polytrees of dynamical systems. The key
point is that the tests defined in [17] and generalized in
Section IV as the one-hop and the two-hop terminal tests only
detect nodes that are terminal in a subtree of the polytree.
In [17], a node identified as terminal can be “eliminated”
from the set of nodes and the algorithm can be applied
recursively on the remaining nodes. In this way a guaranteed
reconstruction of the topology is achieved. In the case of
polytrees, this “elimination” procedure can not be performed
because the node to be eliminated in one subtree could still
have some edges that have not been detected linking it to
other subtrees. Thus, the generalization of the Recursive
Regrouping Algorithm to the polytree case has to perform
a “selective elimination” of a node only in certain subtrees.
This is obtained in the following algorithm by setting the
distance of the node to be eliminated to +o0o only with the
nodes of the subtree it has to be removed from.

Algorithm

1) Initialize V' with the observed nodes V' = {x1,...x, }

2) Initialize I; ; < I(x;,x;) for all pairs of observed
nodes

3) Repeat, until the reconstructed topology is connected,

a) Compute W;;, = I — I;; for any triplet
(xiv Zj, xk)

b) Run the 1-hop test to determine if a pair (z;, z;)
is directly connected with x; being a terminal
node in a subtree. In such a case redefine I =
1), ; = 400 for every k such that [; ;I ; < oo.

¢) Run the 2-hop test and determine if a pair (x;, ;)
is directly connected to a hidden node. In such a
case

« introduce the new detected hidden nodes in the
graph with the detected edges

« collapse the hidden nodes forming a loop into
the same node xj, and add zj, to to V'

o determine the distance between every newly
added hidden node x;, and every other detected
node zj, in V using (8) as in Proposition 17.

o for each node x; identified as terminal at this
pass, update I;, = I ; = I = I ; = +o0
for every xy, such that I(j, k)l ; < co.

d) check if a pair (x;,x;) is such that I, ; < 400,
and I, = I; ), = +oo for every xj, # x;,x; and
in such a case connect them
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Theorem 18: The generalized regrouping algorithm ex-
actly reconstructs an identifiable polytree.

Proof: [“Sketch of the proof”’] The proof follows from
the results in [17] where the Recursive Regrouping Algo-
rithm is shown to successfully reconstruct a rooted tree.
Indeed, the algorithm we propose runs the Recursive Re-
grouping Algorithm in a “parallel way” on all the rooted
subtrees of the polytree. Due to limits of space, we just
provide an intuitive explanation of this fact omitting the
technical details. First, we observe that if a polytree is min-
imal, then every subtree is minimal. The one-hop-terminal
and the two-hop-terminal tests detect nodes that are terminal
in a subtree of the polytree. Also, they determine the nodes
(hidden or not) of the polytree where the terminal nodes
happen to be directly connected. As in the standard Recursive
Regrouping Algorithm, the new hidden nodes and the new
detected edges are added to the current estimate of the graph.
The distances between the newly introduced hidden nodes
and the other nodes are computed again as in the standard
Recursive Regrouping Algorithm. The validity of Equation
(8) to compute the distance of a hidden node z; from the
other nodes is proven in [16] in the case of the correlation
metric d(z;, z;) = —log(p(x;,x;)). However, the proof only
makes use of the additivity property of the metric, and thus
it applies to our case, as well.

The main difference is that in the standard Recursive
Regrouping Algorithm the nodes that are detected as terminal
do not need to be tested anymore: all their connection have
been identified. They can simply get removed. In the case
of polytrees this can not be done because a node that is
terminal in a subtree is possibly connected to nodes of other
subtrees through edges that have not been identified yet. The
solution to this impasse is provided at steps 3b) and 3d) of
the algorithm where the quantities I; 5, Iy, I, and Iy ;
are reinitialized to +o00. At these two steps, for all the nodes
identified as terminal in a subtree during the iterative step, the
distances are reinitialized to +oo, but only for nodes that are
in subtrees for which they are detected as terminal nodes. As
a result, this generalization of the algorithm follows the same
computational steps of the standard Recursive Regrouping
Algorithm within each subtree by “eliminating” the terminal
nodes from a subtree when they are detected. Each terminal
node is “eliminated” only in each subtree where it is terminal,
but not from the other subtrees. As a consequence the
generalized algorithm provides the reconstruction of each
subtree of the polytree, and therefore the whole polytree.

|

Observe that the algorithm is not capable of reconstructing
the directionality of the links, but only their presence

VI. EXAMPLES
A. Step by step execution of the algorithm

We illustrate the steps of the algorithm a simple example,
in order to clarify how the technique works. A polytree of
nine nodes (of which two are roots) is depicted in Figure 5(a).
Only seven nodes are observed, thus we know only the
existence of the limited subset shown in Figure 5(b) with
the relative distances. By using the one-hop-terminal test
we find that the nodes 4 and 5 and the nodes 6 and 7 are

directly linked. Also, it is known that 5 is a terminal node
in every subtree where also 4 is present. The distance of
5 from any node that is in every subtree shared with 4 is
reinitialized to +oco Similarly 7 is terminal in every subtree
where 6 is present and its distance from all nodes in every
subtree shared with 6 are reinitialized to 4-co. After this step
5 and 7 have distance equal to +oco from all the nodes of the
graph. By using the two-hop terminal test we find that there
is a hidden node between 1 and 2, a hidden node between
2 and 3 and a hidden node between 1 and 3. If these three
nodes were distinct, there would be a cycle in the graph, so
they collapse into the same hidden node 8. The distances of
1, 2, and 3 from all the nodes in the common subtree are
reinitialized to +o00. As a result nodes 1 and 2 have distance
equal to +o00 from all the nodes of the polytree. Nodes 1, 2,
5 and 7 are not going to be involved in any other test and are
effectually not active anymore. Instead node 3 is still active
because it has a finite distance from 4 and 6. The intermediate
configuration obtained after this first pass of the algorithm is
depicted in Figure 5(c). At the second pass of the algorithm,
nodes 3, 4 and 6 are found to be connected through a hidden
node (9) using the two-hop terminal test. This configuration
obtained after the second pass of the algorithm is depicted in
Figure 5(c). Since now the graph is connected, the algorithm
terminates.

B. Application of the algorithm to non minimal trees

As a second example we show the result of the application
of the algorithm to a non-minimal polytree. A non-minimal
polytree is depicted in Figure 6(a). The structure obtained
applying the algorithm proposed in this article is shown in
Figure 6(b). Node 11 satisfies the conditions of minimality
(outdegree greater or equal to 2 and degree great or equal
to 3) and it gets correctly detected. Nodes 12 and 13 do not
meet the minimality conditions and pass undetected. Indeed,
as a result node 12, that has degree equal to 2, is “bypassed”,
while node 13, that has degree equal to 1 is “ignored”. All
the other links, instead, are correctly identified.

: 19
@ 0)

Fig. 6. (a) A non-minimal polytree. (b) The result of the reconstruction
using the proposed algorithm.

VII. CONCLUSIONS

In this paper we have formulated the problem of recon-
structing an acyclic structure of stochastic processes where
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(a) True configuration with 7 observable nodes {1,...,7} and 2 latent nodes {8,9}; (b) Starting configuration with only observable nodes. (c)

At the first step the pairs (1, 2), (2, 3) and (1, 3) are identified by the two-hop-terminal test as pairs of terminal nodes connected to a hidden node. The
node is unique, otherwise there would a loop in the topology. Thus, node 8 is detected. At the same time the one-hop-terminal test detects the links 4 — 5
and 6 — 7 determining also that 5 and 7 are terminal. From this step on nodes 1, 2 and 3 will not be tested with any node that is a descendant of node
1, and nodes 5 and 7 will not be tested anymore with descendants of node 9. (d) At the second step the two-hop-terminal test finds that 3, 4 and 6 are
connected to the same hidden node (node 9). The algorithm ends at this point since the structure is connected.

not all the processes are directly observed. Under mild as-
sumptions on the degrees of the nodes in the graph structure,
the exact reconstruction of the topology is guaranteed.
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APPENDIX

Proof: [Proof of Lemma 14] First we consider the
case of a minimal LCMT (rooted tree structure). In such
a case I(x;,x;), I(x;,xr), I(zj,xr) < +oo is true for
all x;, x;, w1 belonging to the tree. The necessity of the
test follows from the additivity property of the distance.
If z; is a terminal node directly connected to x;, then
U(x;,z;,x,) = I(x;,x;) for every xy. The sufficiency is
proved by contradiction. If x; and x; are not connected,
then there is another node in the path linking them. If such
a node is observable let it be xj, otherwise, because of the
minimality of the LCMT, there is an observable node xj in
the connected subgraph that separates z; and ;. Then, we
obtain

Vowy iz = L (@iyxp) — Iy, on) < Iz, xp) + I(xg, xr)
< I(xivxj)

that is a contradiction.

For the general polytree case, we have that I(z;,z;),
I(zi,xr), I(xj,2) < 4oo if and only if z;,2; and z;
belong to the same rooted tree. Hence, the condition in (5)
is equivalent to the condition that, in all the rooted trees x;
belongs to, x; is a terminal node and z; is directly connected
to it. Thus, by examining the possible scenarios, only one of
the following conditions is met

1) 6§ (z;) =0

2) 6 (x;) =1 and 67 (z;) = 0.

|

Proof: [Proof of Lemma 15] First we consider the case

of a minimal LCMT (rooted tree structure). In such a case

I(zi, xj), I(zi, zx), I(zj, ) < +oo is true for all x;, x;,

zf, since they belong to the same subtree. Let xj be the

hidden node separating x; and x;. From the additivity of the

distance we have that ¥, .. -, = d(x;, x5) + d(xph, T8) —

d(zg,xn) — d(zp,xzj) = C. The constant C' does not

depend on x; and, given the topological identifiability of
the polytree, C' < d(z;, x;)

We have that I(z;,x;), I(x;, zx), I(z}, ) < +oo if and
only if x;, z; and x} belong to the same rooted tree. Hence,
the condition is equivalent to the condition that, in all the
rooted trees x; and x; belong to, there is a hidden node
separating them. [ |
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