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Abstract— Data analysis in single molecule studies often
involves estimation of parameters and the detection of abrupt
changes in measured signals. For single molecule studies, tools
for automated analysis that are crucial for rapid progress, need
to be effective under large noise magnitudes, and often must
assume little or no prior knowledge of parameters being stud-
ied. This article examines an iterated, dynamic programming
based step detection algorithm (SDA). It is established that
given a prior estimate, an iteration of the SDA necessarily
improves the estimate. The analysis provides an explanation
and a confirmation of the effectiveness of the learning and
estimation capabilities of the algorithm observed empirically.
Further, an alternative application of the SDA is demonstrated,
wherein the parameters of a worm-like chain (WLC) model
are estimated, for the automated analysis of data from single
molecule protein pulling experiments.

I. INTRODUCTION

The recently found ability of performing single-molecule
experiments have provided crucial insights into the biological
machinery of the cell [1], [2]. Single molecule experiments
have revealed that many biological systems exhibit discrete
behavior [3], [4], [5], [6]. For example, motor-proteins (also
known as molecular motors) such as, kinesin and dynein,
take discrete steps over microtubules while carrying cargo
and form a fundamental mode of transport inside cells [5].
Instruments such as atomic force microscopes (AFMs) and
optical tweezers have enabled resolution of measuring forces
in the femto to multiple pico Newton range with spatial
resolution at the nanometer scale. These instruments have
made it possible to perform protein folding and unfolding
experiments [7], [8], [9], [10], where domains fold and
unfold with force differentials in the pico-Newton and femto-
Newton range. The length of the domains are in the tens to
hundreds of nanometers. The challenges of single molecule
studies are many. For example, in force spectroscopy ex-
periments using AFMs (see Fig. 1), a solution with protein
molecules to be studied is deposited on a substrate, and a
cantilever with a sharp tip is pressed against the substrate
to enable a protein molecule to attach to the tip. Subse-
quent to pressing the cantilever against the substrate, the
cantilever is retracted away from it. If there is a successful
attachment the protein is extended and comes under tension.
The domains of the protein unfold under the application
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of tension. The unfolding of a domain leads to a step
change in the length of the protein. How much time is
needed for the domains to unfold, the relationship to the
force applied, the changes in the structure under folding
and unfolding events are questions that are studied with
AFM based force spectroscopy. Most of the studies involve
numerous iterations of experiments. Often, data is collected
from a large number of experiments, not just to ensure a
high confidence on statistical information, but also because
experiment success rates are sometimes intentionally kept
low. For example, in single molecule force spectroscopy,
the protein solution is diluted enough to ensure that the
the success rate of an attachment forming between the tip
and protein is between two to ten percent [4], [11]. The
low probabilities of attachment ensure that the probability
of attaching to multiple protein molecules is low [4], [11].
The task of obtaining accurate yet precise statistics of events
under large uncertainties and the confounding dynamics of
the instrumentation is a daunting one. For example, in AFM
experiments, the protein domains can unfold at rapid rates
where the dynamics of the cantilever cannot be ignored. The
timing of domain unfolding or folding and changes in protein
structure have to be ascertained from the measured cantilever
deflection data which is corrupted by effects of thermal noise
(process noise), measurement noise and the dynamics of the
cantilever probe. It is evident that the needs of fundamental
biophysics research necessitate the development of tools for
automatic detection and estimation of abrupt changes in
measurements and parameters of models used to describe the
experimental data. In addition, these tools must be capable
of operating with minimal prior information on the systems
being studied. In this article, events characterized by steps
appearing in data and parameters are emphasized; however,
the methods discussed are applicable and extensible to many
other characteristics of events (such as impulsive changes in
the data).

A number of step detection tools for the study of single
molecules are available [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21]. A comparative study of tools in [17],
[18], [19], [20], [21] reported almost similar performance
[3], with the χ2 based technique in [21] observed to have
improved temporal resolution. The step detection algorithm
(SDA) [12], an iterative algorithm involving dynamic pro-
gramming (Viterbi) based methodology, was demonstrated to
successfully extract stepping statistics from signals with low
signal to noise ratios (SNR), and with no prior information
on the number of steps or their sizes. Further, the algorithm
was capable of removing the undesirable effects of probe
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Fig. 1. Schematic of a protein pulling experiment. A polypeptide chain
protein is stretched between a substrate and a cantilever tip of an AFM.

dynamics on the data. The SDA’s effectiveness is evident
from its use in a number of bio-physical studies that include,
the detection of wear in molecular tracks [22], the detection
of fluorophore events in the study of nanodot arrays [23],
and HP1 chromatin binding [24]. Although SDA has found
applications in multiple fundamental biophysics studies and
its efficacy demonstrated in simulation studies (where the
ground truth is known), the reasons for its effectiveness are
not established. The algorithm is empirically observed to
demonstrate learning, in which previous estimates of the step
size distributions are used to provide a new, more accurate
estimate of the same. Toward an analysis and substantial
extension of SDA’s applicability, this article makes two
main contributions: (i) It provides the framework to evaluate
and analyze the learning capability of the SDA. A key
result of the article is that it rigorously establishes that
with every learning iteration of the SDA, the estimation
improves. (ii) It extends the SDA for learning parameters of
models that explain single molecule behavior. Furthermore,
it demonstrates the efficacy of the methods developed, on
data obtained from simulations as well as experiments.

The article is organized as follows. Section II introduces
the step detection problem and provides the details of the
SDA. Section III establishes that the SDA’s estimates im-
prove with every iteration. Section IV extends the SDA
for identifying worm like chain (WLC) models used in
protein force spectroscopy experiments. The results of this
reformulation are presented and discussed in Sections V &
VI with simulation and experiment data.

II. THE STEP DETECTION PROBLEM

We begin with a description of the problem setting and
the step detection algorithm proposed in [12].

A. The Step Detection Problem

We will denote stochastic variables by bold characters and
their realizations by normal characters. Further, to denote a
sequence X = {x1, x2, ..., xT }, we will use capitalized sym-
bols. A partial sequence {xr, x2, ...., xs} will be represented
by Xs

r , where the subscript and superscript represent the start
and end of sequence respectively.

Let X† = {x†1, x
†
2, ...x

†
T } be the true stepping signal

generated by a system with its dynamics given by

x†t = x†t−1 + ut,

where, ut is a stochastic variable with an unknown distribu-
tion p(ut) independent of time t. Let Y = {y1, y2, ..., yT }
be the observations of X† corrupted by zero mean Gaussian
noise with,

yt = x†t + ηt,

where, ηt ∼ N (0, σ2) for all t. The task of the step detection
algorithm is to find an accurate estimate X̂ = {x̂1, x̂2, ...x̂T }
of X† given the observations Y , and, to obtain an estimate
of the step-size distribution (that is, an estimate of p(u)). It
is to be noted that even though we have not introduced probe
dynamics that can confound measurements, the methodology
is applicable in the presence of such dynamics. The simpler
model is used to keep the presentation accessible and for
space considerations.

B. SDA Formulation

As presented in [12], the SDA takes the measured data as
input and a fits a staircase possibly with different step-sizes
to the data (we assume that the staircase also admits negative
steps). The SDA is iterative. Assuming the measurement
noise is zero mean with variance σ2, where, an estimate of
the variance is known, the SDA has as its first iterate, the
solution of the following optimization problem:

X̂∗ = arg min
X

{
T∑

t=1

(yt − xt)2 +Wt(xt − xt−1)

}
, (1)

where
Wt(xt − xt−1) = 9σ2δ̄(xt − xt−1), (2)

with

δ̄(u) =

{
0 u = 0

1 otherwise
.

Equation 1 has a quadratic error term and a penalty term that
penalizes steps in the fit to the data. The initial high penalty
of nine times the variance of noise given by (2), ensures that
any step included in the first staircase fit is a true step with
high probability. The optimization problem is solved using
dynamic programming. It is reasonable to expect that any
steps in the fit with penalty (2) will have high probability of
being a true step; however, many true steps will be missed
in the fit. Subsequent to the first iteration, the staircase fit
obtained is used to create a histogram of step sizes obtained
from the fit. The histogram is normalized to obtain the
penalty term for the subsequent iterate, where, step-sizes
with higher frequency in the histogram are penalized with
less severity compared to the ones with low frequency. This
procedure of, fitting a staircase to the data using an estimate
of step-size distribution followed by obtaining an estimate
of step-size distribution from the fit, is iterated until no
further change is observed in the histogram of step-sizes.
Remarkably, the algorithm is empirically shown to perform



well and is used extensively in many biophysics studies [24],
[23], [22]. It is to be remarked that the SDA assumes no prior
knowledge of step-sizes, where, multiple step sizes are also
admissible.

In this section, the SDA’s operational steps are cast in a
formal setting, to enable rigorous analysis. First the connec-
tion of each iterate with maximum a posteriori probability
estimate is presented. The maximum a posteriori probability
(MAP) fit is obtained by

X̂MAP := arg max
X
{p(X|Y )} ,

where, p(X|Y ), is the probability density function of X
given Y = Y evaluated at X . If γ(·) is the distribution
over X , then

X̂MAP = arg max
X
{p(Y |X)γ(X)} .

Consider the case where the step-size distribution from a
previous fit is used to obtain a probability distribution γ(·)
over u. Then, Theorem 1 demonstrates the link between the
SDA estimate and a MAP estimate.

Theorem 1. Given a prior probability distribution γ(·) over
step size u = xt − xt−1, X̂MAP = X̂SDA, when x0 = 0
with

X̂SDA = arg min
X

{
T∑

t=1

(yt − xt)2 +Wt(xt − xt−1)

}
(3)

and

Wt(xt − xt−1) = −2σ2 log
[
γ(ut = xt − xt−1|Xt−1

1 )
]
.

Proof. See [12] for a proof.

Theorem 1 shows that if the true step size distribution were
known, then optimizing the objective function

∑T
t=1(yt −

xt)
2 +Wt(xt − xt−1) provides the MAP estimate of X†.

The SDA thus assumes that the system generating the step
signals has a generative model as shown in Fig. 2. Here the
prior probability γ(·) over u is assumed to be approximated
by a histogram with fixed bin ranges R = {r1, r2, ..., rK} of
equal widths ∆r and free bin heights Θ = {θ1, θ2, ..., θk}.
The choice of the number of bins K and the ranges R is
chosen to approximate γ(·) accurately without overfitting.
Thus, the bin heights Θ parameterize the distribution γ(·).
We first cast the SDA formally into two principal stages,
namely the minimization stage (M-Stage) followed by the
evaluation stage (E-Stage), which are iterated N times to give
an estimate

[
X̂(N),Θ(N)

]
. Let n ∈ {1, 2, ..., N} represent

iteration count. Then the two stages are as follows:
M-Stage: Minimize the objective function J(X,Θ(n−1))

with respect to X to give X̂(n) , where

X̂(n) := arg min
X

J(X,Θ(n−1)), (4)

with,

... ...

Fig. 2. Generative model assumed by the SDA to reconstruct step signals.
Here Θ = {θ1, ..., θK} are the time invariant parameters of the unknown
step size distribution. xt are the true steps that are hidden, and yt the noisy
observations of xt.

J(X,Θ(n−1)) :=

T∑
t=1

(yt − xt)2 +Wt(X,Θ
(n−1)).

Here, Wt(X,Θ
(n−1)) is a regularization term used to prevent

overfitting and is defined as:

Wt(X,Θ
(n−1)) =

{
9σ2δ̄(xt − xt−1) n = 1

−2σ2 log
[
p(ut|Xt−1

1 ,Θ(n−1))
]

n > 1

with

δ̄(u) =

{
0 u = 0

1 otherwise
.

Here, p(ut|Xt−1
1 ,Θ(n−1)) is the probability density function

of taking a step ut evaluated for the step size ut, with
ut = xt − xt−1 in iteration n, given Θ(n−1), the previous
estimate of parameters of the step size distribution. In this
step, Θ(n−1) is assumed as known.

E-Stage: Evaluate Θ(n) = {θ(n)
1 , θ

(n)
2 , ..., θ

(n)
K } using

θ
(n)
k =

s
(n)
k

T
for all k, (5)

where s
(n)
k is the number of steps, u(n)

t , in the fit X̂(n)

contained within the bin rk. Thus s(n)
k = |{t : u

(n)
t ∈ rk}|1

where |Γ|1 is the cardinality of the set Γ. Here T is the
total number of observations of steps u(n)

t in the estimate
X̂(n), (thus equal to

∑K
k=1 s

(n)
k ). The SDA is summarized

in Algorithm 1.

Algorithm 1 Step Detection Algorithm
Input: Time series measurements Y = {y1, y2, ..., yT }.
Output: Step fit X̂(N) = {x̂(N)

1 , x̂
(N)
2 , ..., x̂

(N)
T } and His-

togram bin parameters Θ(N) = {θ(N)
1 , θ

(N)
2 , ..., θ

(N)
K }.

1: Set initial penalty using (2)
2: Compute step fit X̂(1) using (1)
3: for all n ∈ {2, 3, ..., N} do
4: E-Stage: Compute Θ(n) using (5)
5: M-Stage: Compute step fit X̂(n) using (4)
6: end for



In the implementation, dynamic programming is used in
the M-Stage for the minimization of J(X,Θ(n−1)) with
respect to X . The total number of iterations N is chosen
such that changes in X̂ and Θ are within desired tolerances.
With the formalization of the framework complete, the main
result is derived in the next section.

III. ITERATIVE LEARNING IN THE STEP
DETECTION ALGORITHM

In [12], it is empirically observed that the fits X̂(n)

improve in accuracy with increasing n. The SDA, in each
iteration, consisting of the M-Stage and E-Stage improves
upon the previous estimates in the sense of increasing the
joint conditional probability density p(X̂,Θ|Y ) evaluated
at X̂(n),Θ(n). The SDA uses the knowledge gained from
the previous estimates in the M-Stage, in the form of a
previously estimated distribution (Θ(n−1)) of the step sizes.
However, in the E-Stage, the re-estimation of the step size
distribution Θ(n) from the fit X̂(n) is kept unbiased. For
example, consider the case where the distribution Θ is
represented by a histogram with K bins {θ1, θ2, ..., θK}.
Then, we assume that any two histogram bin heights Θ

′
and

Θ
′′

satisfy p(Θ
′
) = p(Θ

′′
). Such an assumption is feasible,

since for any integer K, Ω = {Θ :
∑K

i=1 θi = 1, θi ≥ 0},
is a compact set of an affine subspace RK , and thus can
be endowed with a uniform probability measure. Using the
natural correspondence between Ω and the space of K−bin
histograms, we can proceed.

Theorem 2. For Θ uniformly distributed, let the observa-
tions Y be corrupted by zero mean Gaussian noise with
known variance σ2. That is, yt = x̂t + ηt, with ηt ∼
N (0, σ2) for all t. Then, given an estimate [X̂(n−1),Θ(n−1)],
the step detection algorithm’s iteration (see Algorithm 1)
produces an improved estimate [X̂(n),Θ(n)] where

p(X̂(n),Θ(n)|Y ) ≥ p(X̂(n−1),Θ(n−1)|Y ).

Proof. The proof is uses Lemma 1 to show an improvement
in both the M-Stage and the E-Stage and omitted due to
space constraints.

Lemma 1. Let U = {u1, u2, ..., uT } be the observations of a
stationary stochastic variable. Let H be a histogram approx-
imating the distribution of U , where H has K bins and bin
ranges R = {r1, r2, ..., rK} of equal widths ∆r such that all
the observations are contained within the union of the ranges
of the bins. Let the bin heights be Θ = {θ1, θ2, ..., θK}. Let
sk be the number of observations ut contained within the bin
rk, that is sk = |{t : ut ∈ rk}|. Then, setting the bin heights
θk = sk

T maximizes the likelihood p(U |Θ) with respect to Θ.

Proof. The proof uses the method of Lagrange multipliers
to solve the constrained optimization problem and is left to
the reader.

IV. WLC MODEL FITTING
Here we apply the step detection algorithm for the analysis

of data from atomic force microscope (AFM) based protein
pulling experiments.
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Fig. 3. Measurements in a pulling experiment. The deflection in the
cantilever as well as the distance between the tip and substrate are measured,
allowing the force versus extension characteristics to be determined.

A. Protein Pulling Experiments

In a protein pulling experiment, a single molecule of a
polypeptide chain protein is attached between a substrate and
a cantilever tip of an AFM as shown in Fig. 3. The distance z
between the cantilever tip and the substrate is measured and
is controlled by a piezoelectric transducer. The deflection
d in the cantilever is measured via a laser photo-diode
sensor arrangement. Thus, the extension (x = z − d) can
be calculated. The deflection in the cantilever is multiplied
by its spring constant to convert it to the force f in the
protein. During an experiment, the distance z is increased at
a constant speed, so as to apply an increasing tensile force
on the protein. It is known (see [25]) that force f is well
characterized by the force-extension relation of the worm
like chain model fWLC , described by (6).

fWLC(x, l, p) =
kBT

p

[
1

4

(
1− x

l

)−2

− 1

4
+
x

l

]
, (6)

where kB is the Boltzmann constant, and T is the temper-
ature. Here, l, which represents the contour length and p,
which represents the persistence of the protein are the free
parameters whose estimates are of interest in the experi-
mental study. Further, during a pulling experiment, folded
domains in the protein unfold rapidly, thereby abruptly
changing both the contour and persistence lengths [4]. The
data analysis then involves the detection of such abrupt
changes in the contour and persistence lengths.

B. SDA Reformulation Strategy

Our task now is to find the estimates L̂ and P̂ of L =
{l1, l2, ..., lT } and P = {p1, p2, ..., pT } given the measure-
ments of force F = {f1, f2, ..., fT } and extension X =
{x1, x2, ..., xT }. While experimental data shows that the
noise in the measured force is stationary, the corresponding
noise in the contour and persistence lengths when inverting
the WLC function is non-stationary and dependent on the
extension. Further, the percentage change in persistence
length is typically smaller than the percentage change in the
contour length, leading to a poorer SNR in the estimates of
p compared to those of l. Due to these challenges, the SDA
is reformulated as follows:
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Fig. 4. Estimates of the contour length with the reformulated SDA
terminated at 20 iterations. The estimates in green were obtained with the
persistence length assumed constant, which leads to the expected error in
the contour length magnitudes. The estimates recomputed locally to improve
accuracy are shown in blue. This is done after estimating the corresponding
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M-Stage: Minimize the objective function
JWLC(L,Θ(n−1)) with respect to L to give L̂(n),
that is

L̂(n) = arg min
X

JWLC(L,Θ(n−1)),

where, JWLC(L,Θ(n−1)) is defined as
T∑

t=1

[
ft − fWLC

t (xt, lt, po)
]2

+Wt(L,Θ
(n−1)),

with

Wt(L,Θ
(n−1)) =

{
9σ2δ̄(lt − lt−1) n = 1

−2σ2 log
[
p(ut|Lt−1

1 ,Θ(n−1))
]

n > 1
.

E-Stage: Evaluate Θ(n) using Θ(n) =
arg maxΘ p(U

(n)|Θ). Here σ2 is the variance of noise
in the force measurements F , n the iteration count, and po
is an initial guess of the mean persistence length. The steps
ut are redefined as ut = lt− lt−1. This reformulation allows
us to determine the steps in L. Since the step locations
in L are caused by unfolding events, the locations of the
steps in P must be the same. At this stage, the regions of
the force versus extension curves corresponding to the step
changes in L and P are extracted. Local estimates for both
are then recomputed using a least squares fit to improve the
estimation accuracy.

V. RESULTS

A. Simulations

The reformulated SDA was applied to simulated data
containing 8 unfolding events with additive Gaussian noise
(N (0, σ = 10 pN)) in the measured forces. The contour
lengths were incremented from 90 nm in steps of 30 nm, and
the persistence lengths incremented from 115 pm in steps of
35 pm. These simulation parameters were chosen to represent
a typical scenario encountered in our experiments.

In Fig. 4, the estimates L̂ from the SDA are compared
with the ground truth. The algorithm was initialized with
po = 130 pm, and thus the errors in the estimate for L̂
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Fig. 5. Persistence length estimates compared with the actual values when
applying the SDA on simulated data.
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Fig. 6. Estimates of the force versus extension curve compared with the
true and measured curves from the simulated system.

are lesser in the region where P was close to this value.
Although, the errors appear to increase in other regions, we
note that the location of steps in the estimate match those of
the truth. These regions are then used to find P̂ and improve
the estimates of L̂, as shown in Fig. 5 and Fig. 4 respectively.
Fig. 6 compares the true and measured forces with those
computed from the estimates L̂ and P̂ .

B. Experimental Application

The reformulated SDA was used to analyze the data
from single molecule force spectroscopy on the I27O AFM
reference protein from AthenaES, which is a combination of
8 repeats of the domain Ig 27 from human titin. The MFP-3D
AFM from Oxford Instruments was used with Bio-cantilevers
(BL-RC-150VB) from Asylum Research with a mean spring
constant of 6 pN nm−1. Further, the actual cantilever spring
constant is measured by analyzing their thermal fluctuations.
All the experiments were conducted at a temperature of
298 K, with the protein solution applied to a fresh gold
substrate. The AFM cantilever’s tip is then pressed against
the substrate with a force in the range of 0.5nN to 2.0nN
for a duration of 3s. The tip is retracted away at a constant
speed. Whenever different ends of a segment of the protein
are adsorbed to the tip and to the substrate, a tensile force
is applied on the segment. To ensure that only a single
molecule is present between the tip and the substrate, the
concentration of the protein solution is kept low (typically



TABLE I
TITIN PARAMETERS: REPORTED VS SDA ESTIMATES

Reported Estimated with SDA % Error
∆L (nm) 28.4 (see [26]) 28.04 −1.3
P (pm) 300± 70 (see [27]) 292 −2.7
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Fig. 7. Sample force versus extension curve from pulling experiments on
titin. The force estimates from the WLC models fit after each unfolding
event are overlaid on the measurements.

below 200 nM l−1).
The estimates of the most probable persistence length (P )

and the most probable contour length per domain (∆L) from
analyzing over 3000 experiments with a 6% success rate are
compared in Table I with the reported values in [26], [27].
A sample force curve and its estimation is shown in Fig. 7.
The automated analysis of the data using the SDA yielded
estimates within acceptable tolerances.

VI. CONCLUSIONS

This article builds a mathematical framework for the
analysis of a step detection algorithm and establishes that
every iterate of the learning process improves the estimates
over the previous estimate. The article extends the use of the
step detection algorithm for estimating parameters of a model
for polymer chains. Furthermore, it shows the efficacy of
the methods developed on force spectroscopy data obtained
using atomic force microscopy.
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